AUTOMATIC OPTICAL DENSITY SENSOR OF MICROALGAE CULTURE ON THE ARDUINO NANO BASIS
Abstract and keywords
Abstract (English):
An automatic sensor for measuring the optical density of microalgae culture on the Arduino Nano basis is proposed. The choice of this microcontroller is due to its wide availability, availability of free software, low cost. It is shown that in the development of such sensors a flow cell is applied, various LEDs are used as a light source. The use of the sensors given in the literature is impossible since the authors do not specify the wiring diagrams of the sensor elements, the software environment on which the algorithm of data collection is written, etc. In this work, the task is to offer a scheme for the development of an optical density sensor from standard widely available components. For example, the proposed sensor used a green led with a maximum luminosity at a wavelength of 520 nm, as a photodetector - photoresistor GL12516. During calibration of the sensor used culture of the cyanoprokaryota Spirulina platensis . The curves of the transmittance and absorption dependence on the dry biomass of S. platensis are obtained. It is shown that in the range of culture densities from 0.07 to 1.38 g DW/l the data with a high degree of accuracy (R2 = 0.99) are described by the Booger-Lambert-Ber equation. Performed testing of the sensor during the cultivation of S. platensis in a plane-parallel photobioreactors of varying thickness.

Keywords:
optical density sensor, Spirulina platensis, absorption coefficient, modelling, plane parallel photobioreactor
Text
Publication text (PDF): Read Download
References

1. Sandnes J.M., Ringstad T., Wenner D., Heyerdahl P.H., Källqvist T., Gislerød H.R. Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J. Biotech., 2006, vol. 122, pp. 209-215. DOI:https://doi.org/10.1016/j.jbiotec.2005.08.034.

2. Briassoulis D., Panagakis P., Chionidis M., Tzenos D., Lalos A., Tsinos C., Berberidis K., Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour. Technol., 2010, vol. 101, pp. 6768-6777. DOI:https://doi.org/10.1007/s00253-015-6876-7.

3. Nedbal L., Trtílek M., Červený J., Komárek O., Pakrasi H.B. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol. Bioeng., 2008, vol. 100, pp. 902-910.

4. Marxen K., Vanselow K., Lippemeier S., Hintze R., Ruser A., Hansen U. A photobioreactor system for computer controlled cultivation of microalgae. J. Appl. Phycol., 2005, vol. 17, pp. 535-549.

5. Yao Y., Thommasson J.A., Ge Y., Sui R. Improvement of an optical density sensor for algae pond monitoring and process control. ASABE, 2012. DOIhttps://doi.org/10.13031/2013.42323.

6. Trenkenshu R.P., Lelekov A.S. Modelirovanie rosta mikrovodorosley v kul'ture. Belgorod: OOO "Konstanta", 2017, 152 s. DOI:https://doi.org/10.21072/978-5-906952-28-8. @@[Trenkenshu R.P., Lelekov A.S. Modelling of microalgae growth in culture. Belgorod: Konstanta, 2017, 152 p. (In Russ.)]

7. Trenkenshu R.P., Lelekov A.S., Borovkov A.B., Novikova T.M. Unificirovannaya ustanovka dlya laboratornyh issledovaniy mikrovodorosley. Voprosy sovremennoy al'gologii, 2017, № 1, vyp. 13. URL: http://algology.ru/1097 @@[Trenkenshu R.P., Lelekov A.S., Borovkov A.B., Novikova T.M. Unified installation for laboratory studies of microalgae. Questions of modern algology, 2017, no. 1, iss. 13. URL: http://algology.ru/1097. (In Russ.)]

8. Gavrilov P.E., Azarov A.A., Lelekov A.S. Protochnyy datchik dlya opredeleniya opticheskoy plotnosti kul'tury mikrovodorosley. Aktual'nye voprosy biologicheskoy fiziki i himii, 2016, t. 1, s. 101-105. @@[Gavrilov P.E., Azarov A.A., Lelekov A.S. Flow sensor for determining the optical density of a microalgae culture, Actual problems of biological physics and chemistry, 2016, vol. 1, pp. 101-105. (In Russ.)]

9. Zarrouck C. Contribution a l’etude d’une cyanophycee. Influence de divers physiques et chimiques sur la crossance et la photosynthese de Spirulina maxima. Ph.D. thesis, Paris, 1966, 138 p.

10. Hol D., Rao K. Fotosintez: per. s angl. M.: Mir, 1983, 134 s. @@[Hol D., Rao K. Photosynthesis: trans. from english. M.: Mir, 1983, 134 p. (In Russ.)]

11. CdS Photoresistor Manual. GL125 Series Photoresistor. URL: https://opencircuit.nl/ProductInfo/1000662/ GL12528-Datasheet.pdf.

12. Trenkenshu R.P., Lelekov A.S., Novikova T.M. Lineynyy rost morskih mikrovodorosley v kul'ture. Morskoy biologicheskiy zhurnal, 2018, t. 3, № 1, s. 53-60. DOI:https://doi.org/10.21072/mbj.2018.03.1.06 @@[Trenkenshu R.P., Lelekov A.S., Novikova T.M. Linear growth of marine microalgae in culture. Marine Biological Journal, 2018, vol. 3, no. 1, pp. 53-60. (In Russ.)]

13. Naumann T., Çebi Z., Podola B., Melkonian M. Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J. Appl. Phycol., 2013, vol. 25, pp. 1413-1420. DOIhttps://doi.org/10.1007/s10811-012-9962-6.

14. Mar'in V.A., Haritonov D.V. Lineynyy rost i passivaciya aktivnyh kletok rastuschey kul'tury mikroorganizmov. Tehnika i tehnologiya pischevyh proizvodstv, 2014, № 4, s. 97-106. @@[Mar'in V.A., Haritonov D.V. Linear growth and passivation of active cells of a growing culture of microorganisms. Technique and technology of food production, 2014, no. 4, pp. 97-106. (In Russ.)]

15. Belyanin V.N., Sid'ko F.Ya., Trenkenshu A.P. Energetika fotosinteziruyuschey kul'tury mikrovodorosley. Novosibirsk: Nauka, 1980, 136 s. @@[Belyanin V.N., Sid'ko F.YA., Trenkenshu A.P. Energy photosynthetic culture of microalgae. Novosibirsk: Nauka, 1980, 136 p. (In Russ.)]

16. Trenkenshu R.P., Lelekov A.S., Gavrilov P.E., Naboyschikov V.S. Matematicheskaya model' zavisimosti opticheskoy plotnosti kul'tury ot biomassy mikrovodorosley. Aktual'nye voprosy biologicheskoy fiziki i himii, 2016, t. 1, c. 77-82. @@[Trenkenshu R.P., Lelekov A.S., Gavrilov P.E., Nabojshchikov V.S. Mathematical model of the dependence of the optical density of the culture on the biomass of microalgae. Actual problems of biological physics and chemistry, 2016, vol. 1, p. 77-82. (In Russ.)]


Login or Create
* Forgot password?