THERMAL INACTIVATION OF MICROORGANISMS USING HIGH EXITED ELECTRONIC STATES OF PHOTOSENSITIZERS
Abstract and keywords
Abstract (English):
Mechanism of inactivation of plankton microorganisms by acoustic shock waves is discussed. Shock waves occur at very rapid formation and collapse of vapor bubbles in a liquid locally point heated to a temperature exceeding the boiling. Local heating was provided by pulsed laser excitation of organic photothermal sensitizers. An effective photothermal sensitizer should have a very short lifetime (picoseconds) of excited states. High excited electronic states (HEES) of organic dyes follow this requirement. HEES are produced as a result the stepwise absorption of two photons by the molecule through the lower excited states. The formation and disappearance of vapor bubbles in the solution was detected as a change in the light scattering of a low-intensity helium-neon laser beam passing through the cuvette.

Keywords:
high excited electronic states of molecules, local heating, shock waves, inactivation of microorganisms
Text
Text (PDF): Read Download
References

1. Baptista P.V. et al. Nano-Strategies to Fight Multidrug Resistant Bacteria - “A Battle of the Titans”. Front. Microbiol., 2018, vol. 9, p. 1441. DOI: fmicb.2018.01441.

2. Kashef N., Huang Y., Hamblin M.R. Advances in antimicrobial photodynamic inactivation at the nanoscale. Review article. Nanophotonics, 2017, vol. 6(5), pp. 853-879. DOI:https://doi.org/10.1515/nanoph-2016-0189.

3. Ghorbani J., Rahban D., Aghamiri Sh., Teymouri A., Bahador A. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther., 2018, vol. 27(4), pp. 293-302. DOI:https://doi.org/10.5978/islsm.27_18-RA-01.

4. Yao Liu Y., Qin R., Zaat S.A.J., Breukink E., Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res, 2015, vol. 1(3), pp. 140-167.

5. Hessling M., Spellerberg B., Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. FEMS Microbiol Lett., 2017, vol. 364(2). DOI:https://doi.org/10.1093/femsle/fnw270.

6. Budimir M. [et al.] Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide-polyethyleneimine flexible nanoheaters. Journal of Materials Chemistry B, 2019, vol. 7, pp. 2771-2781.

7. Lapotko D. Pulsed photothermal heating of the media during bubble generation around gold nanoparticles. International Journal of Heat and Mass Transfer, 2009, vol. 52, pp. 1540-1543. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.010.

8. Rout B., Liu C., Wu W. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Scientific Reports, 2017, vol. 7. DOI:https://doi.org/10.1038/s41598-017-07444-w.

9. Letuta S.N., Lantuh Yu.D., Pashkevich S.N. Relaksaciya vysokih elektronno-vozbuzhdennyh sostoyaniy mnogoatomnyh molekul. Orenburg: izd-vo OGU, 2016, 164 s. @@[Letuta S.N. Relaxation of high-energy excited electronic states of polyatomic molecules. Orenburg: OSU print., 2016, 164 p. (In Russ.)]

10. Kucherenko M.G. Kinetika nelineynyh fotoprocessov v kondensirovannyh molekulyarnyh sistemah. Orenburg: Izd-vo OGU, 1997. @@[Kucherenko M.G. Kinetics of non-linear photoprocesses in condensed molecular systems. Orenburg: OSU print., 1997. (In Russ.)]

11. Malik Z., Ladan H., Nitzan Y. Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B Biol., 1992, vol. 14(3), pp. 262-266. DOI:https://doi.org/10.1016/1011-1344(92)85104-3.

12. Jori G., Fabris C., Soncin M.S., Coppellotti O., Dei D. [et al.] Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med., 2006, vol. 38(5), pp. 468-481. DOI:https://doi.org/10.1002/lsm.20361.


Login or Create
* Forgot password?