We consider a stochastic model of the ion dynamics of the pacemaker's heart cell based in the generalized Maltsev-Lakatta model of two oscillators including the electron-conformational model of ryanodine receptors. It is shown that the formation of the action potential significantly depends on the nature of interactions between the external membrane and intracellular (“Ca2+ clock”) oscillators. The constructive interaction between oscillators leads to the formation of a stable action potential, while a destructive interaction leads to parasitic effects, in particular, arrhythmias. We examined the influence of the model parameters characteristic of the rabbit sinoatrial heart node on the qualitative aspect of the time dependence of the cell membrane potential. The conditions under which spontaneous transition of oscillations to the abnormally fast mode occurs have been found and this mechanism has been described, thereby the behavior of the pacemaker cell during tachycardia has actually been modeled. Computer simulation shows that the suppression of fast potassium current normalizes the oscillatory mode of the ion dynamics of the pacemaker cell, that corresponds to the action of class III antiarrhythmic drugs.
pacemaker cell, arrhythmia, Maltsev-Lakatta model, electron-conformational model, computer simulation
1. Mandela V.Dzh. Aritmii serdca. Mehanizmy. Diagnostika. Lechenie. Medicina, M., 1996. @@[Heart arrhythmias. Translated from English under the editorship of V.J. Mandela. M.: Medicine, 1996 (In Russ.)]
2. The Cardiac Arrhythmias Suppression Trial Investigators (CAST). N. Engl. J. Med., vol. 321, 406 (1989).
3. The Cardiac Arrhythmias Suppression Trial Investigators (CAST), N. Engl. J. Med. vol. 327, 233 (1992).
4. Vinogradova T.M., Zhou Y.Y., Maltsev V.A. et al. Rhythmic Ryanodine Receptor Ca2+ Releases During Diastolic Depolarization of Sinoatrial Pacemaker Cells Do Not Require Membrane Depolarization. Circ. Res., 2004, vol. 94, no. 6, p. 802.
5. Bogdanov K.Y., Maltsev V.A., Vinogradova T.M. et al. Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Res., 2006, vol. 99, p. 979.
6. Maltsev V.A., Lakatta E.G. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am. J. Physiol. Heart Circ. Physiol., 2009, vol. 296, p. 594.
7. Bozler E. The Initiation of Impulses in Cardiac Muscle. Amer. J. Physiol., 1943, vol. 138, p. 273.
8. Sobie E.A., Dilly K.W., Jafri M.S. Termination of cardiac of Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J., 2002, vol. 83, p. 59.
9. Gyorke I., Gyorke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys. J., 1998, vol. 75, no. 6, p. 2801.
10. Wilders R., Jongsma H.J., van Ginneken A.C.G. Pacemaker activity of the rabbit sinoatrial node: a comparison of mathematical models. Biophys. J., 1991, vol. 60, no. 5, p. 1202.
11. Shannon T.R., Pogwizd S.M., Bers D.M. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ. Res., 2003, vol. 93, no. 7, p. 592.
12. Shannon T.R., Wang F., Puglisi J. A Mathematical Treatment of Integrated Ca Dynamics within the Ventricular Myocyte. Biophys. J., vol. 87, no. 5, p. 3351.
13. Kurata Y., Hisatome I., Imanishi S., Shibamoto T. Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 283, no. 5, p. H2074.
14. Bers D. Excitation-Contraction Coupling and Cardiac Contractile Force. Springer, New York, 2001.
15. Kurata Y., Hisatome I., Imanishi S., Shibamoto T. Roles of L-type Ca2+ and delayed-rectifier K+ currents in sinoatrial node pacemaking: insights from stability and bifurcation analyses of a mathematical model. Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 285, no. 6, p. H2804.
16. Baruscotti M., Bucchi A., Difrancesco D. Physiology and pharmacology of the cardiac pacemaker ("funny") current. Pharmacol. Ther., 2005, vol. 107, p. 59.
17. Moskvin A.S., Philipiev M.P., Solovyova O.E., Markhasin V.S. Electron-conformational model of nonlinear dynamics of the ryanodine channel lattice in cardiomyocytes. Dokl. Biochem. Biophys., 2005, vol. 400, p. 32.
18. Moskvin A.S., Philipiev M.P., Solovyova O.E., Markhasin V.S. Electron-conformational model of ryanodine receptor lattice dynamics. Prog. Biophys. Mol. Biol., 2006, vol. 90, p. 88.
19. Moskvin A.S., Iaparov B.I., Ryvkin A.M., Solovyova O.E., Markhasin V.S. Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating. JETP Letters, 2015, vol. 102, no. 1, p. 67.
20. Ryvkin A.M., Moskvin A.S., Solov'eva O.E., Marhasin V.S. Modelirovanie avtovolnovoy kal'cievoy dinamiki v kardiomiocitah v ramkah elektronno-konformacionnoy teorii. Dokl. RAN, 2012, t. 444, № 5, s. 572. @@[Ryvkin A.M., Moskvin A.S., Solovyova O.E., Markhasin V.S. Simulation of autowave calcium dynamics in cardiomyocytes in the framework of electron-conformational theory. Proceedings of the Academy of Sciences, 2012, vol. 444, no. 5, p. 572. (In Russ.)]
21. Moskvin A.S., Ryvkin A.M., Solovyova O.E., Markhasin V.S. Electron-conformational transformations in nanoscopic RyR channels govern both the heart's contraction and beating. JETP Letters, 2011, vol. 93, no. 7, pp. 403-408.
22. Ryvkin A.M., Zorin N.M., Moskvin A.S., Solovyova O.E., Markhasin V.S. The Interaction Of The Membrane And Calcium Oscillators In Cardiac Pacemaker Cells: Mathematical Modeling. Biofizika, 2015, vol. 60, no. 6, p. 946.
23. Gonotkov M.A. Dis.. kand. biol. nauk (In-t fiziologii Komi nauch. centra UrO RAN, Syktyvkar, 2015. @@[Gonotkov M.A. Diss.. Cand. Biol. Sciences (Institute of physiology of Komi). center Uro RAS, Syktyvkar, 2015. (In Russ.)]
24. Malev V.V., Kaulin Y.A., Bezrukov S.M., Gurnev P.A., Takemoto J.Y., Shchagina L.V. Kinetics of opening and closure of syringomycin E channels formed in lipid bilayers. Membr. Cell Biol., 2001, vol. 14, pp. 813-829.