The effect of hypoosmotic load on the blood of two species of marine fish, characterized by tolerance to the salinity factor, was studied in vivo experiment. The objects of study were the Black Sea gobies: Gobius cobitis (Pallas, 1814) - found in coastal waters, lagoons, estuaries and Neogobius melanostomus (Pallas, 1814) - found in marine and fresh water. The control group of fish was kept at 12-14o/oo. Experimental groups of fish were within 44-45 days at 4,8-5,6o/oo. The water temperature was maintained at 15 + 1oC. Blood samples were taken at 1-5, 14-16 and 44-45 days of the experiment. Estimated water content in the blood, erythrocyte indices, the activity of Na+, K+-ATPase and the balance of Na+ and K+ on the membrane of the erythrocyte. Under hypoosmotic load G. cobitis showed no signs of active osmoregulation. The water content in the blood during the experiment increased by 9.5-14.2% (p < 0.001) and remained at this level throughout the observation period. This has resulted to svelling and lysis of the red blood cell mass. Simultaneously there was a dissipation of ionic gradients at the level of red blood cells and a decrease in the activity of Na+, K+-ATPase. N. melanostomus , on the contrary, compensated for the initial (1-5 days) increase in blood water content. It showed no signs of svelling or lysis of red blood cells. In this case, red blood cells showed signs of active osmoregulation. At hydration of blood plasma, they had a directed yield of K+ while maintaining the Na+ content in the cell. In comparison with G. cobitis , preparations of erythrocyte membranes N. melanostomus differed increased activity of Na+, K+-ATPase. These qualities apparently to allow were tolerate N. melanostomus to wide range of salinity fluctuations and are the basis of its euryhalinity.
marine fish, hypoosmotic load, blood, red blood cells, the balance of Na+ and K+, activity of Na+, K+-ATPase
1. Evans D.H. A Brief History of the Study of Fish Osmoregulation: The Central Role of the Mt. Desert Island Biological Laboratory. Frontiers of Physiology, 2010, vol. 1, pp. 13-32.
2. Maetz J. Fish Gills: Mechanisms of Salt Transfer in Fresh Water and Sea Water. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1971, vol. 262, no. 842, pp. 209-249.
3. Soldatov A.A. Peculiarities of organization and functioning of the fish red blood system (review). J. Evolutionary Biochem. Physiol., 2005, vol. 41, no 3, pp. 272-281. ; DOI: https://doi.org/10.1007/s10893-005-0060-0; EDN: https://elibrary.ru/LTYZEB
4. Eckert S.M., Yada T., Shepherd B.S., Stetson M.H., Hirano T., Grau E.G. Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen. Comp. Endocrinol., 2001, vol. 122, pp. 270-286.
5. Perrott M.N. The renin-angiotensin system and osmoregulation in fish. Diss. Abst. Int. Pt. B Sci. Eng., 1989, vol. 50, p. 280.
6. Wong K.Sh. Characterization of the renin-angiotensin system in silver seabream (Sparus sarba): Perspective in salinity adaptation. Diss. Abstr. Int., 2006, vol. 67, p. 147.
7. Avella M., Berhaut J., Bornancin M. Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. 1. Biochemical and morphological changes in the gill epithelium. J. Fish Biol., 1993, vol. 42, pp. 243-254.
8. Soldatov A.A. Peculiarities of osmoregulation of the circulating red blood cells in steno- and euryhaline marine fish species under hypoosmotic conditions. J. Evolutionary Biochem. Physiol., 2000, vol. 36, no 1, pp. 52-58.
9. Arjona F.J., Vargas-Chacoff L., Ruiz-Jarabo I., Goncalves O., Pascoa I., Martin del Rio M.P., Mancera J.M. Tertiary stress responses in Senegalese sole (Solea senegalensis Kaup, 1858) to osmotic challenge: Implications for osmoregulation, energy metabolism and growth. Aquaculture, 2009, vol. 287, pp. 419-426.
10. Mylonas C.C., Pavlidis M., Papandroulakis N., Zaiss M.M., Tsafarakis D., Papadakis I.E., Varsamos S. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture, 2009, vol. 287, pp. 203-210.
11. Svetovidov A.N. Ryby Chernogo morya. M.: Nauka, 1964, 552 s. @@[Svetovidov A.N. Vlack Sea Fish. M.: Nauka, 1964, 552 p. (In Russ.)]
12. Soldatov A.A. Physiological Aspects of Effects of Urethane Anesthesia on the Organism of Marine Fishes. Hydrobiol. J., 2005, vol. 41, no. 1, pp. 113-126. ; DOI: https://doi.org/10.1615/HydrobJ.v41.i1.130; EDN: https://elibrary.ru/XJVYLL
13. Stenko M.I. Krov'. Spravochnik po klinicheskim laboratornym metodam issledovaniya. M.: Medicina, 1975, s. 5-135. @@[Stenko M.I. Blood. Handbook of clinical laboratory methods. M.: Medicine, 1975, pp. 5-135. (In Russ.)]
14. Starodub N.F. Metody issledovaniya strukturnoy geterogennosti gemoglobinov mlekopitayuschih. Metody molekulyarnoy biologii. Kiev: Nauk. dumka, 1979, s. 176-191. @@[Starodub N.F. Methods of investigation of structural heterogeneity of mammalian hemoglobins. Methods of molecular biology. Kiev: Naukova Dumka, 1979, pp. 176-191. (In Russ.)]
15. Komarov F.I., Korovkin B.F., Men'shikov V.V. Biohimicheskie issledovaniya v klinike. L.: Medicina, 1976, 384 s. @@[Komarov F.I., Korovkin B.F., Menshikov V.V. Biochemical studies in the clinic. Leningrad: Medicine, 1976, 384 p. (In Russ.)] ; EDN: https://elibrary.ru/ZRNZUJ
16. Sedmak F.F., Grossberg S.E. A rapid, sensitive and versative assay for protein using coomassie brilliant blue G-250. Anat. Biochem., 1977, vol. 79, pp. 544-552.
17. Natochin Yu.V. Evolyuciya vodno-solevogo obmena i pochki. Evolyucionnaya fiziologiya (rukovodstvo po fiziologii). Ch. 1. L.: Nauka, 1983, s. 371-426. @@[Natochin Yu.V. Evolution of water-salt metabolism and kidneys. Evolutionary physiology (guide to physiology). Part 1. Leningrad: Nauka, 1983, pp. 371-426. (In Russ.)]
18. Fugelli K., Zachariassen K.E. The distribution of tarine, gamma-amino-butyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolarities. Comp. Biochem. Physiol., 1976, vol. 55A, pp.173-177.
19. Natochin Yu.V., Shahmatova E.I., Lavrova E.A., Maksimovich A.A., Karpenko L.A., Martem'yanov V.I. Volyumregulyaciya kletok nekotoryh organov i tkaney u presnovodnyh i prohodnyh ryb pri izmenenii osmolyarnosti i ionnogo sostava syvorotki krovi. Zh. evolyuc. bioh. fiziol., 1991, t. 27, № 2, s. 159-166. @@[Natochin Yu.V., Shakhmatova E.I., Lavrova E.A., Maksimovic A.A., Karpenko L.A., Martemyanov V.I. Volumerelative cells of some organs and tissues from freshwater and anadromous fish when you change the osmolarity and ionic composition of blood serum. J. Evolutionary Biochem. Physiol., 1991, vol. 27, no. 2, pp. 159-166. (In Russ.)] ; EDN: https://elibrary.ru/YTEGGF
20. Hebab S.A., Hanke W. Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stresses. Comp. Biochem. Physiol., 1982, vol. 71A, no 2, pp. 157-164.
21. Lavrova E.A., Natochin Yu.V., Shahmatova E.I. Elektrolity v tkanyah osetrovyh i kostistyh ryb v presnoy i morskoy vode. Vopr. ihtiol., 1984, t. 24, № 5, c. 867-871. @@[Lavrov E.A., Natochin Y.V., Shakhmatova E.I. Electrolytes in the tissues of sturgeon and bony fish in fresh and sea water. J. Ichthyology, 1984, vol. 24, no. 5, pp. 867-871. (In Russ.)]
22. Bachand L., Leray C. Erythrocyte metabolism in the yellow perch. I. Glycolytic enzymes. Comp. Biochem. Physiol., 1975, vol. 50 B. pp. 567-570.
23. Leray C. Patterns of purine nucleotides in some North sea fish erythrocytes. Comp. Biochem. Physiol., 1982, vol. 71B, no 1, pp. 77-81.