Baku, Azerbaijan
Using the method of impedance spectroscopy, we studied the change regularities in the three electrical characteristics of Nitellopsis obtuse cells: potential φm, resistance Rm, capacity Cm, while modifying the transport properties of the plasma membrane (PM).The average values of these quantities for 100 cells under standard conditions were φм = -171±0,4 mV Rм = 3.8±0,15 Om∙m2, Cm = 0,9 ± 0,05 μf∙ cm-2, respectively. Between Rm and φm has been established a linear dependence of Rm = 0,032-0,03φm with a coefficient correlation r = 0,67.The activity of K+ ions in the cell cytoplasm, measured using K+ -sensitive microelectrodes, was ak+ = 104 ± 6 mM. In the conducting state, in cells with | φм |> 170 mV, were observed K+- channels of inward rectification and in cells with | φм | <170 mV-K+- channels of outward rectification. At 10 and 100-fold increase of the K+content in the medium, and modulation of the protein phase content in the PM, Cм change wasn’t observed. Consequently, the contribution of the protein phase in PM is insignificant for Cм.The exogenous effects of low concentrations of lipophilic modifiers of dimethyl sulfoxide, dicyclohexylcarbodiimide and the K+ channel blocker Co2 + caused a change of Cm by 20-30%, an increase in φm within 30 mV at a constant Rm, which indicated the relationship between electrogenic activity and lability of structural-polarization PM properties.
lability, Functional activity
1. Volkov G.A. Plant Electrophysiology: “Theory and methods”. Springer-Verlag-New-York, 2006, 512 p.
2. Cole K.S. Electrical properties of squid axon sheath. Biophys. J., 1976, vol. 16, pp. 137-142.
3. Adrian R.H., Almers W. Charge movement in the membrane of striated muscle. J. Physiol. London, 1976, vol. 254, pp. 339-360.
4. Musayev N.A., Ojaqverdiyeva S.Y., Mahmudova Sh.S. The changes of structure-functional state of plasma membrane in Nitellopsis obtuse under the influence of dimethylsulfoxide. Advances in Biology and Earth Sciences, 2018, vol. 3, no. 3, pp. 241-247.
5. Vorob'ev L.N., Musaev N.A. Elektricheskie harakteristiki plazmalemmy i kletochnoy obolochki kletok Nitellopsis obtusa. Nizkochastotnoy impedans. Fiziologiya rasteniy, 1979, t. 26, № 4, s. 711-720. @@[Vorobyev L.N., Musayev N.A. Electrical characteristics of plasma membrane and cell wall of Nitellopsis obtusa cells. Low frequency impedance. Plant physiology, 1979, vol. 26, no. 4, pp. 711-720. (In Russ.)]
6. Lu C.C., Kabakov A., Markin S., Mager S. et al., Membrane transport mechanisms probed by capacitance measurements with megahertz voltage clamp. Proced. Natl. Acad. Scince USA, 1995, vol. 92, pp. 11220-11224.
7. Musaev N.A., Vorob'ev L.N. Elektrogennaya aktivnost' i strukturnaya labil'nost' plazmalemmy kletok Nitellopsis obtusa pri povyshennyh temperaturah. Fiziol. rast., 1981, t. 28, № 1, s. 86-93. @@[Musayev N.A., Vorobyev L.N. Electrogenic activity and structural lability of plasma membrane of Nitellopsis obtusa cells at elevated temperatures. Plant physiology, 1981, 28(1), pp. 86-93. (In Russ.)]
8. Musaev N.A., Yurin V.M., Sokolik A.I., Ismailov E.R. Elektrogennaya aktivnost' plazmaticheskoy membrany kletok Chara gymnophylla. Vestnik BGU, 2008, ser. 2, № 3, s. 46-49. @@[Musayev N.A., Yurin V.M., Sokolik A.I., Ismailov T.R. Elektrogenic activity of plasma membrane of Chara gymnophylla cells. Messenger of BSU., 2008, ser. 2, no. 3., pp. 46-49. (In Russ.)]
9. Musaev N.A., Ismailov E.R. Bioelectrical properties of Chara gymnophylla plasma membrane during interaction with cobalt (Co2+). Ecology, vol. 200763, pp. 1-6.
10. Samoylov V.O. Medicinskaya biofizika. Spec. lit., 2004, 495 s. @@[Samoylov V.A. Medical Biophysic. Spes. Lit, 2004, 495 p. (In Russ.)]
11. Kasumov H.M. Struktura i membrannaya funkciya polienovyh makrolidnyh antibiotikov. Baku-Moskva, Elm-Nauka, 2009, 512 s. @@[Kasumov Kh.M. Structure and membrane function of polyene makrolide antibiotics. Baku-Moskow, Elm-Nauka, 2009, 512 p. (In Russ.)]
12. Ibragimova V.H., Aliev D.I., Alieva I.N. Biofizicheskie i medikobiologicheskie aspekty ispol'zovaniya polienovyh antibiotikov v sochetanii s dimetilsul'foksidom. Biofizika, 2002, t. 47, № 5, s. 833-841. @@[Ibrahimova, V.Kh., Aliyev, D.I., Aliyeva, I.N. Biophysical and medical-biological aspects of using of polyene antibiotics in combination with dimethyl sulfoxide. Biophysics, 2002, vol. 47, no. 5, pp. 833-841 (in Russ.)]
13. Yu Z.W., Quinn P.J. Dimethyl sulphoxide: a review of its applications in cell biology. Bioscince Report, 1994, vol. 14, pp. 259-81.
14. Chi-Yuan Cheng, Jinsuk Song, Jolien Pas, Lenny H.H. Meijer, Songi Han. DMSO Induces Dehydration near Lipid Membrane Surfaces. Biophys J., 2015, vol. 109, no. 2, pp. 330-339. DOI:https://doi.org/10.1016/j.bpj.2015.06.011.
15. Kiselev M.A. Kombinirovannoe primenenie neytronnogo i sinhrotronnogo izlucheniya dlya issledovaniya vliyaniya dimetilsul'foksida na strukturu i svoystva membran dipalmitoilfosfatidilholina. Kristallografiya, 2007, t. 52, № 3, s. 554-559. @@[Kiselyov M.A. Combined use of neutron and synchrotron radiation to study the effect of dimethyl sulfoxide on the structure and properties of dipalmitoylphosphatidylcholine membranes. Crystallography, 2007, vol. 52, no. 3, pp. 554-559. (In Russ.)]
16. Klaus-Dieter Liss. Challenged by Neutron and Synchrotron Radiation. Metals, 2017, no. 7, pp. 266-274.
17. Ismailov E.R., Musaev N.A. Dimetilsul'foksid inducirovannaya depolyarizaciya plazmalemmy kletok Chara gymnophylla. Vestnik Bakinskogo Gosudarstvennogo Universiteta, seriya estestvennye nauki, 2005, № 1, s. 74-79. @@[Ismailov E.R., Musaev N.A. Dimethyl sulphoxide induced depolarization of plasmalemma of Chara gymnophylla cells. Messenger of Baku State University, series of natural sciences, 2005, no. 1, pp. 74-79. (In Russ.)]
18. Orlova O.V., Egorova S.N., Oslopov V.N. Issledovanie vliyaniya dimetilsul'oksida na pronicaemost' kletochnyh membran. Eksperimental'naya medicina, 2011, t. 92, № 6, s. 901-904. @@[Orlova O.V., Egorova S.N., Oslopov V.N. Study of the effect dimethyl sulphoxide on the permeability of cell membranes. Experimental Medicine, 2011, vol. 92, no. 6, pp. 901-904. (In Russ.)]
19. Călinescu O., Linder M., Wöhlert D., Yildiz Ö., Kühlbrandt W., Fendler K. Electrogenic Cation Binding in the Electroneutral Na+/H+ Antiporter of Pyrococcus abyss. Journal of Biological Chemistry, 2016, vol. 291, iss. 52, pp. 26786-26793.