STUDY OF THE ROLE OF MICRODISPERSED PHASE OF WATER DURING ITS TRANSITION TO ACTIVATED STATE
Abstract and keywords
Abstract (English):
The paper considers the well-known phenomenon of water activation through the influence of external factors of a physical nature on it, leading to the consequences of the same orientation: increasing pH, lowering ORP, increasing electrical conductivity, lowering viscosity and surface tension, and, as a result, increasing bioavailability. Existing explanations of the phenomenon are reduced, as a rule, to the assumption of the restructuring of the water structure at the molecular level. However, the data of the last thirty years show that the water is heterogeneous at the micro level, which can be observed under a conventional optical microscope. The aim of the work was to clarify the role of the state of aggregation of the microdispersed phase of water in changing a number of its physicochemical parameters during the transition of water to an activated state. As modifying effects, mechanical disturbance, low-intensity light irradiation, heating and freezing - thawing were used. In all cases, reversible unidirectional changes in indicators characteristic of activated water were observed. Observations under an optical microscope showed that all types of exposure to water were accompanied by the dissociation of aggregates of the microdispersed phase of water and their reassociation after hours (days). The nature of the phenomenon is discussed from the standpoint of increasing the free energy of the system (the surface area of the interface) under the influence of the introduced energy and relaxation of the effect due to the Gibbs law. It was suggested that an increase in pH and a decrease in redox potential can be associated with an increase in the area of the negatively charged surface and an increase in the sorption of protons (hydroxonium ions). A number of known water anomalies are presented that do not contradict these observations.

Keywords:
water activation, microdispersed systems, physical effects, aggregation, free energy
Text
Publication text (PDF): Read Download
References

1. Chernikov F.R. Sverhmedlennye kolebaniya svetorasseyaniya v zhidkostyah raznogo tipa. Biofizika, 1990, t. 35, № 5, s. 711-715. @@[Chernikov F.R. Superslow fluctuations of light scattering in liquids of different types. Biofizika, 1990, vol. 35, no. 5, p. 711-715. (In Russ.)]

2. Sedlák M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization. J. Phys. Chem. B, 2006, vol. 110, no 9, p. 4329-4338.

3. Bukatyy V.I., Nesteryuk P.I. Issledovanie opticheskih neodnorodnostey (klasterov) v bidistillirovannoy vode opticheskim metodom malyh uglov. Polzunovskiy vestnik, 2011, № 3/1, s. 106-108. @@[Bukaty V.I., Nesteryuk P.I. The study of optical inhomogeneities (clusters) in bidistilled water by the optical method of small angles. Polzunovsky Bulletin, 2011, no. 3/1, pp. 106-108. (In Russ.)]

4. Ito K., Yoshida H., Ise N. Void Structure in colloidal dispersions. Science, 1994, vol. 263, no 7, p. 66-68.

5. Yoshida H., Ise N., Hashimoto T. Restricted motion of a particle trapped inside a void in a colloidal dispertion. Langmuir 1995, vol. 11, no 8, p. 2853-2855, DOI:https://doi.org/10.1021/la00008a002.

6. Smirnov A.N., Syroeshkin A.V. Supranadmolekulyarnye kompleksy vody. Ros. Him. Zh., 2004, t. XLVIII, № 2, s. 125-135. @@[Smirnov A.N., Syroeshkin A.V. Supranadmolecular complexes of water. Russian Chemical Journal, 2004, vol. XLVIII, no. 2, p. 125-135. (In Russ.)]

7. Shui Yin Lo, Xu Geng, David Gann. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Physics Letters A, 2009, vol. 373, pp. 3872-3876, DOI:https://doi.org/10.1016/j.physleta.2009.08.061.

8. Ho M-W. Large Supramolecular Water Clusters Caught on Camera - A Review. DOI: 10.14294/ WATER.2013.12

9. Yakhno T., Yakhno V. A study of structural organization of water and aqueous solutions by means of optical microscopy. Crystals, 2019, vol. 9, no. 1, p. 52, DOI:https://doi.org/10.3390/cryst9010052.

10. Yakhno T., Drozdov M., Yakhno V. Giant Water Clusters: Where Are They From? Int. J. Mol. Sci., 2019, vol. 20, p. 1582, DOI:https://doi.org/10.3390/ijms20071582.

11. Laboratory Water. Its Importance and Application. National Institutions of Health, 2013, 22 p.

12. Del Giudice E., Spinetti P.R., Tedeschi A. Water Dynamics at the Root of Metamorphosis in Living Organisms. Water, 2010, vol. 2, p. 566-586, DOI:https://doi.org/10.3390/w2030566.

13. Ho M-W. Large Supramolecular Water Clusters Caught on Camera - A Review. DOI: 10.14294/ WATER.2013.12.

14. Yinnon T.A., Elia V., Napoli E., Germano R., Liu Z.Q. Water Ordering Induced by Interfaces: Experimental and Theoretical Study. Water, 2015, DOI:https://doi.org/10.14294/WATER.2015.3.

15. Pollack G. The fourth phase of water: beyond solid, liquid, and vapor. Ebner and Sons Publishers, 2013, 320 p.

16. James R., Seddon T., Lohse D. Nanobubbles and micropancakes: gaseous domains on immersed substrates. J. Phys.: Condens. Matter, 2011, vol. 23, p. 133001, DOI:https://doi.org/10.1088/0953-8984/23/13/133001.

17. Zhang L, Zhang X, Fan C, Zhang Y and Hu J. Nanoscale multiple gaseous layers on a hydrophobic surface. Langmuir, 2009, vol. 25, no. 16, pp. 8860-8864, DOI:https://doi.org/10.1021/la901620e.

18. Yahno T.A., Yahno V.G. Mikrostruktura i fazovye perehody vody po dannym opticheskoy mikroskopii. Sbornik trudov vtoroy vserossiyskoy konferencii «Fizika vodnyh rastvorov», 17-18 oktyabrya 2019, g. Moskva, 2019, c. 44-45. @@[Yakhno T.A., Yakhno V.G. Microstructure and phase transitions of water according to optical microscopy. «Proceedings of the second all-Russian conference "Physics of aqueous solutions", October 17-18, 2019, Moscow, 2019, p. 44-45, URL: https://www.researchgate.net/publication/336678616_Mikrostruktura_i_fazovye_ perehody_vody_po_ dannym_opticeskoj_mikroskopii (in Russ.)]

19. Yahno T.A., Yahno V.G., Zanozina V.F. Fazovye perehody vody kak istochnik medlennyh kolebatel'nyh processov v zhidkih sredah. Aktual'nye voprosy biologicheskoy fiziki i himii. BFFH-2017: materialy XII mezhdunarodnoy nauchno-tehnicheskoy konferencii, g. Sevastopol', 2-6 oktyabrya 2017 g., s. 23-27. @@[Yakhno T.A., Yakhno V.G., Zanozina V.F. Phase transitions of water as a source of slow oscillatory processes in liquid media. Actual problems of biological physics and chemistry. BFFC-2017: materials of the XII international scientific and technical conference, Sevastopol, October 2-6, 2017, p. 23-27 (in Russ.)]

20. Gulyaev Yu.V., Eremin S.M., Markov I.A., Novoselova E.G., Novikov V.V., Ten Yu.A., Fesenko E.E. Fiziko-himicheskie svoystva bezreagentno-modificirovannoy vody i ee biologicheskaya aktivnost'. Zhurnal radioelektroniki, 2005, t. 11. 2@[Gulyaev Yu.V., Eremin S.M., Markov I.A., Novoselova E.G., Novikov V.V., Ten Yu.A., Fesenko E.E. Physico-chemical properties of reagent-free water and its biological activity. Journal of Radioelectronics, 2005, vol. 11. (in Russ.)].

21. Kulagina V.A., Sapozhnikova E.S., Stebeleva O.P., Kashkina L.V., Chzhen Ch.-I., Li C., Li F.-Ch. Osobennosti vliyaniya effektov kavitacii na fiziko-himicheskie svoystva vody i stokov. Zhurnal Sibirskogo federal'nogo universiteta. Tehnika i Tehnologii, 2014, t. 5, № 7, s. 605-614. @@[Kulagina V.A., Sapozhnikova E.S., Stebeleva O.P., Kashkina L.V., Zheng Ch.-I., Li Ts., Lee F.-Ch. Features of the effect of cavitation on the physicochemical properties of water and effluents. Journal of Siberian Federal University. Engineering & Technologies, 2014, vol. 5, no. 7, p. 605-614 (in Russ.)].

22. Chirkova V.Yu., Stas' I.E. Ocenka izmeneniy fiziko-himicheskih svoystv deionizovannoy vody v rezul'tate elektromagnitnogo vozdeystviya i razlichnyh sposobov degazacii. Izvestiya altayskogo gosudarstvennogo universiteta, 2014, DOI:https://doi.org/10.14258/izvasu(2014)3.1-44. @@[Chirkova V.Yu., Stas I.E. Diagnosis of changes in physico-chemical characteristics of deionized water due to electromagnetic field effect and various methods of degasation. News of Altai State University, 2014, DOI:https://doi.org/10.14258/izvasu(2014)3.1-44. (In Russ.)]

23. Musienko K.S., Ignatova T.M., Glazkova V.V. Izuchenie vliyaniya fizicheskih poley na fiziko-himicheskie svoystva vody. Biomedicinskaya inzheneriya i elektronika, 2014, № 2, URL: biofbe.esrae.ru/199-963. @@[Musienko K.S., Ignatova T.M., Glazkova V.V. Studying the influence of physical fields on the physicochemical properties of water. Biomedical Engineering and Electronics, 2014, no. 2, URL: biofbe.esrae.ru/199-963. (In Russ.)]

24. Anosov A.V., Truhan E.M. Variaciya vektornogo potenciala v laboratornyh usloviyah izmenyaet biologicheskie svoystva vody. Biofizika, 2012, t. 57, № 3, s. 389-394. @@[Anosov A.V., Trukhan E.M. The variation of the vector potential in the laboratory changes the biological properties of water. Biophysics, 2012, vol. 57, no. 3, pp. 389-394. (in Russ.)].

25. Yahno T.A., Uvarov V.M., Sanin A.G., Kazakov V.V. Gidroudarno-kavitacionnoe vozdeystvie na vodu, ili kuda devayutsya protony? Materialy dokladov V S'ezda Biofizikov Rossii, 4-11 oktyabrya 2015, Rostov-na-Donu, t. 2, s. 339. @@[Yakhno T.A., Uvarov V.M., Sanin A.G., Kazakov V.V. Hydro-shock-cavitation effect on water, or where do protons disappear? Materials of reports of the V Congress of Biophysicists of Russia, October 4-11, 2015, Rostov-on-Don, vol. 2, p. 339. (in Russ.)].

26. Yahno T.A., Pahomov A.M., Sanin A.G., Yahno V.G. Vliyanie nizkointensivnogo sveta na strukturnye i dinamicheskie parametry vody. Nauchnye trudy VIII Mezhdunarodnogo kongressa «Slabye i sverhslabye polya i izlucheniya v biologii i medicine», 2018, SPb, t. 8, s. 99, URL: www.biophys.ru/archive/congress-2018.pdf#page=99. @@[Yakhno T.A., Pakhomov A.M., Sanin A.G., Yakhno V.G. The effect of low-intensity light on the structural and dynamic parameters of water. Scientific works of the VIII International Congress “Weak and Superweak Fields and Radiations in Biology and Medicine”, 2018, St. Petersburg, vol. 8, p. 99. (in Russ.)]

27. Maestro, L.M.; Marqués, M.I.; Camarillo, E.; Jaque, D.; García Solé, J.; Gonzalo, J.A.; Jaque, F.; del Valle, J.C.; Mallamace, F.; Stanley, H.E. On the existence of two states in liquid water: Impact on biological and nanoscopic systems. Int. J. Nanotechnol. 2016, vol. 13, no. 8-9, pp. 667-677.

28. Osnovnye ponyatiya i uravneniya kolloidnoy himii (red. K.I. Grodskiy, N.N. Kienskaya, V.V. Gavrilova, V.V. Nazarov). M.: RHTU im. D.I. Mendeleeva, 2013, 40 s. @@[Basic concepts and equations of colloid chemistry (ed. by K.I. Grodsky, N.N. Kienskaya, V.V. Gavrilova, V.V. Nazarov). M.: DI. Mendeleev RCTU, 2013, 40 p. (in Russ.)].

29. Shatalov V.M. Degazaciya kak mehanizm biologicheskogo deystviya slabyh elektromagnitnyh poley. URL: www.biophys.ru/archive/congress2012/proc-p37-d.pdf @@[Shatalov V.M. Degassing as a mechanism of biological action of weak electromagnetic fields. URL: www.biophys.ru/archive/congress2012/proc-p37-d.pdf (in Russ.)].

30. Shatalov V.M., Noga I.V., Zinchenko A.A., Bunkin N.F. Vliyanie gazovyh nanopuzyr'kov na elektroprovodnost' chistoy vody. Problemy ekologii i ohrany prirody tehnogennogo regiona. Doneck: DonNU, 2010, t. 1, № 10, s. 252-257. @@[Shatalov V.M., Noga I.V., Zinchenko A.A., Bunkin N.F. The effect of gas nanobubbles on the conductivity of pure water. Problems of ecology and nature conservation of the technogenic region. Donetsk: DonNU, 2010, vol. 1, no. 10, pp. 252-257 (in Russ.)]

31. Yahno T. Krov' kak polidispersnaya sistema. Lambert Academic Publishing GmbH & Co, Germany, 2011, 313 s. @@[Yakhno T. Blood as a polydisperse system. Lambert Academic Publishing GmbH & Co, Germany, 2011, 313 p. (in Russ.)].


Login or Create
* Forgot password?