THE ROLE OF NANOPARTICLES IN THE STUDY OF THE BIOLOGICAL SENSITIVITY OF ELECTROMAGNETIC RADIATION IN THE RADIO AND MICROWAVE RANGE
Abstract and keywords
Abstract (English):
The proposed material presents data from our results of experimental investigations and analysis of published data on the use of nanomaterials in bioelectromagnetic studies. The main attention is paid to the role of liquid nanovesicles (liposomes) with the functions of drug carriers and their sustained release in the human body. It is assumed that the antiplatelet action of the liposomal form of LА (lipoic acid) is induced by inhibition of the initiation of lipid peroxidation products. Microwave radiation had an inhibitory effect on the process of incorporation of LA into liposomes. The possible role of nanoparticles in changing surface membrane potential of blood cells is noted in the paper, it may lead to electroporation of cell membranes. The information of nanoparticles effect on electrodynamic characteristics of cellular suspensions is given, the results of using nanoparticles in radio microwave thermotherapy are shown. An effective method has been developed for calculating the nonlinear dynamic hysteresis of superparamagnetic nanoparticles under the influence of external electromagnetic fields. The results of theoretical studies of the stationary response to an external ac field of arbitrary strength of ferromagnetic nanoparticles with mixed uniaxial and cubic anisotropy are presented. The nonlinear dynamic susceptibility, dynamic magnetic hysteresis loops and their normalized areas are calculated. The stationary response to an alternating field demonstrates low-frequency relaxation (due to transitions between metastable states) and high-frequency ferromagnetic resonance.

Keywords:
radio and microwave radiation, cell suspensions, metal nanoparticles, carbon nanotubes, absorption of radio frequency radiation, electroporation of membranes, dielectric properties of normal and malignant tissue, superparamagnetic particles, nonlinear dynamic hysteresis
Text
Publication text (PDF): Read Download
References

1. Roussakow S. The History of Hyperthermia Rise and Decline. Hindawi. Conference of the International Clinical Hyperthermia Society, 2012, Conference Paper, 2013, Article ID 428027, DOI:https://doi.org/10.1155/2013/428027.

2. Szasz A, Szasz O, Szasz N. Electrohyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift für Onkologie, 2001, vol. 33, pp. 91-99.

3. Ren F. J. et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv, 2014, vol. 4, pp. 14419-14431.

4. Calcio Gaudino E, Tagliapietra S, Martina K, et al. Novel SWCNT platform bearing DOTA and β-cyclodextrin units. "One shot" multidecoration under microwave irradiation. Org Biomol Chem., 2014, vol. 12, pp. 4708-4815.

5. Bosca F, Orio L, Tagliapietra S, Corazzari I, Turci F, Martina K, Pastero L, Cravotto G et al. Microwave-Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrin- Grafted Reduced-Graphene Oxide. Chem Eur J., 2016, vol. 22, pp. 1608-13.

6. Kulik G.I., Ponomareva O.V., Korol' V.I., Chehun V.F. Toksichnost' i protivoopuholevaya aktivnost' liposomal'noy lekarstvennoy formy doksorubicina. Onkologiya, 2004, t. 6, c. 207-214. @@[Kulik G.I., Ponomareva O.V., Korol V.I., Chekhun V.F. Toxicity and antitumor activity of the liposomal dosage form of doxorubicin. Oncology, 2004, vol. 6, pp. 207-214. (In Russ.)]

7. Gel'perina S.E., Shvec V.I. Sistemy dostavki lekarstvennyh veschestv na osnove polimernyh nanochastic. Biotehnologiya, 2009, № 3, s. 8-23. @@[Gelperina S.E., Shvets V.I. Drug delivery systems based on polymer nanoparticles. Biotechnology, 2009, no. 3, pp. 8-23. (In Russ.)]

8. Shvec V.I., Krasnopol'skiy Yu.M., Sorokoumova G.M. Liposomal'nye formy lekarstvennyh preparatov: tehologicheskie osobennosti polucheniya i primeneniya v klinike. M.: Remedium, 2016, 226 s. @@[Shvets V.I., Krasnopolsky Yu.M., Sorokoumova G.M. Liposomal forms of drugs: the technological features of the preparation and use in the clinic, 2016, M.: Remedium, 226 p. (In Russ.)]

9. Schelkonogov V.A., Sorokoumova G.M., Baranova O.A., Chekanov A.V., Klochkova A.V., Kazarinov K.D., Solov'eva E.Yu., Fedin A.I., Shvec V.I. Liposomal'naya forma lipoevoy kisloty: poluchenie i opredelenie antiagregacionnoy i antioksidantnoy aktivnosti. Biomedicinskaya himiya, 2016, t. 62, vyp. 5, c. 577-583. @@[Shchelkonogov V.A., Sorokoumova G.M., Baranova O.A., Chekanov A.V., Klochkova A.V., Kazarinov K.D., Solovieva E.Yu., Fedin A.I., Shvets V.I. Liposomal form of lipoic acid: preparation and determination of antiplatelet and antioxidant activity. Biomedical Chemistry, 2016, vol. 62, no. 5, pp. 577-583. (In Russ.)]

10. Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, vol. 110(12) pp. 2654-2665.

11. Nair T.,.Symanowski, and Gach H.M. Comparison of Complex Permittivities of Isotonic Colloids Containing Single- Wall Carbon Nanotubes of Varying Chirality. Bioelectromagnetics, 2012, vol. 33, pp. 134-146.

12. Gannon Ch. J., Patra Ch. R., Bhattacharya R., Mukherjee P. and Curley S. A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. Journal of Nanobiotechnology, 2008, vol. 6, p. 2. DOI:https://doi.org/10.1186/1477-3155-6-2.

13. Tatur S., Maccarini M., Barker R., Nelson A., and Fragneto G. Effect of Functionalized Gold Nanoparticles on Floating Lipid Bilayers. Langmuir, 2013, vol. 29 (22), pp. 6606-6614.

14. Malinin V.S., Putvinsky A.V., Kazarinov K.D. Calcium dependent Activation of Human Blood Neutrophils Electric Fields Pulses. - In: Electricity and magnetism in Biology and Medicine. Plenum Publishing Corporation, N.Y., 1999, pp. 569-572.

15. Puchkova T.V., Putvinskiy A.V., Vladimirov Yu.A. Snizhenie elektricheskoy prochnosti kak osnovnoy mehanizm narusheniya bar'ernoy funkcii biomembran. Dokl. AN SSSR, 1983, t. 270, № 6, s. 1489-1492. @@[Puchkova T.V., Putvinsky A.V., Vladimirov Yu.A. Decrease in electric strength as the main mechanism of violation of the barrier function of biomembranes. Dokl. USSR Academy of Sciences, 1983, vol. 270, no. 6, pp. 1489-1492. (In Russ.)]

16. Chekanov A.V., Baranova O.A., Levin A.D., Solov’eva E.Yu., Fedin A.I., Kazarinov K.D. Influence of gold nanoparticles on activation of human blood neutrophils. Biophysics, 2013, vol.58, Issue 3, pp. 385-388.

17. Chekanov A.V., Solov'eva Z.Yu., Babushkin A.V., Mudrov V.P., Stamm M.V., Baranova O.A., Fedin A.I., Kazarinov K.D. Vliyanie nanochastic serebra na aktivaciyu neytrofilov. Medicinskiy alfavit. Sovremennaya laboratoriya, 2014, № 4, s. 50-53. @@[Chekanov A.V., Solov'eva Z.Yu., Babushkin A.V., Mudrov V.P., Stamm M.V., Baranova O.A., Fedin A.I., Kazarinov K.D. Vliyanie nanochastic serebra na aktivaciyu nejtrofilov. Medicinskij alfavit. Sovremennaya laboratoriya, 2014, no. 4, pp. 50-53. (In Russ.)]

18. Morgalev Yu.N., Morgaleva T.G., Hoch N.S., Morgalev S.Yu. Osnovy bezopasnosti pri obraschenii s nanomaterialami. Tomsk: TGU, 2010, 138 s. @@[Morgalev Yu.N., Morgaleva T.G., Khoch N.S., Morgalev S.Yu. Safety basics for handling nanomaterials. Tomsk: TSU, 2010, 138 p. (In Russ.)]

19. Dolat E., Rajabi O., Salarabadi S. S., Yadegari-Dehkordi S., Sazgarni A. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major. Bioelectromagnetics, 2015, vol. 36, (8), pp. 586-596.

20. Kalmykov Yu.P., Titov S.V., Coffey W.T., Dowling W.J. Finite-barrier correction for the ferromagnetic resonance frequency of nanomagnets with various magnetocrystalline anisotropies. Phys.Rev. B., 2018, vol. 97, p. 224418. DOI:https://doi.org/10.1103/PhysRevB.97.224418.

21. Kalmykov Yu.P., Titov S.V., Coffey W.T., Zarifakis M., Dowling W.J., Forced response and dynamic hysteresis of magnetic nanoparticles with mixed uniaxial and cubic anisotropy in superimposed strong ac and dc bias fields. Phys.Rev. B., 2019, vol. 99, p. 184414. DOI:https://doi.org/10.1103/PhysRevB.99.184414.

22. Kalmykov Yu.P., Titov S.V., D.J. Byrne, Coffey W.T., Zarifakis M., Al Bayyari M.H., Dipole-dipole and exchange interaction effects on the magnetization relaxation of two macrospins: compared. JMMM, 2020, vol. 507, p. 166814. DOI:https://doi.org/10.1016/j.jmmm.2020.166814

23. Hou J., Wan B., Yang Y., Ren X.M., Guo L.H., Liu J.F. Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation. Int. J. Mol. Sci., 2016, vol. 17 (3), pii: E409, DOI: 10.3390/ ijms17030409.


Login or Create
* Forgot password?