MOLECULAR MODELING OF THE STRUCTURE AND PROPERTIES OF DIPHENYLALANINE PEPTIDE NANOTUBES OF DIFFERENT CHIRALITY CONTAINING WATER MOLECULES
Abstract and keywords
Abstract (English):
The paper presents and analyzes the results of semi-empirical calculations (HyperChem) for diphenylalanine nanotubes (PNT) of different chiralities (L-FF and D-FF), empty and filled with water/ice clusters, previously optimized by DFT (VASP) methods. The results obtained show that, after optimization, the dipole moment and polarization of both L-FF and D-FF PNT types and embedded water/ice clusters are enhanced; water/ice clusters acquire a helix-like structure similar to L-FF and D-FF PNT. Ferroelectric properties of tubular helix-like water/ice clusters obtained after optimization within PNT L-FF and D-FF, as well as PNT L-FF and D-FF per se with embedded water/ice clusters are discussed.

Keywords:
diphenylalanine, peptide nanotube, water molecules, molecular modeling, semi-empirical methods, self-assembly, polarization, chirality
Text
Publication text (PDF): Read Download
References

1. Calvin M. Chemical evolution. Molecular evolution, towards the origin of living system on the Earth and elsewhere. Oxford: Claredon, 1969.

2. Tverdislov V.A. Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics, 2013, vol. 58, no. 1, pp. 128-132. DOI:https://doi.org/10.1134/S0006350913010156.

3. Malyshko E.V., Tverdislov V.A. Physical Principles of Discrete Hierarchies Formation in Protein Macromolecules. IOP Conf. Series: Journal of Physics: Conf. Series, 2017, vol. 917, 042025. DOI:https://doi.org/10.1088/1742-6596/917/4/042025.

4. Bystrov V.S., Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Zhulyabina O.A., Tverdislov V.A. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes. J. Mol. Modeling, 2019, vol. 25, p. 199. DOI:https://doi.org/10.1007/s00894-019-4080-x.

5. Bystrov V.S., Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Zhulyabina O.A., Tverdislov V.A. Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties. Mathematical Biology and Bioinformatic, 2019, vol. 14, no. 1, pp. 94-124. DOI:https://doi.org/10.17537/2019.14.

6. Bystrov V.S., Coutinho J., Zhulyabina O.A., Kopyl S.A., Zelenovskiy P.S., Nuraeva A.S., Tverdislov V.A., Filippov S.V., Kholkin A.L., Shur V.Ya. Modeling and physical properties of diphenylalanine peptide nanotubes, containing the water molecules. Ferroelectrics, 2020. - In print.

7. Bystrov V.S., Kopyl S.A., Zelenovskiy P., Zhulyabina O.A., Tverdislov V.A., Salehli F., Ghermani N.E., Shur V.Ya, Kholkin A.L. Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics, 2018, vol. 525, pp. 168-177. DOI:https://doi.org/10.1080/00150193.2018.14328.

8. Ryan H, Carter M., Stenmark P., Stewart J.J., Braun-Sand S.B. A comparison of X-ray and calculated structures of the enzyme MTH1. J. Mol. Mod., 2016, vol. 22, no. 7, pp. 1-18.

9. Filippov S.V., Bystrov V.S. Vizual'no-differencial'nyy analiz strukturnyh osobennostey vnutrennih polostey dvuh hiral'nyh form difenilalaninovyh nanotrubok. Biofizika, 2020, t. 65, № 3, s. 445-452, DOI:https://doi.org/10.31857/S0006302920030035. @@[Filippov S.V., Bystrov V.S. A Visual Differential Analysis of Structural Features of Internal Cavities in Two Chiral Forms of Diphenylalanine Nanotubes. Biophysics, 2020, vol. 65, no. 3, pp. 374-380. (In Russ.)]

10. Bystrov V.S., Coutinho J., Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Filippov S.V., Zhulyabina O.A., Tverdislov V.A. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules. J. Mol. Mod., 2020. - In print.

11. Vienna ab initio simulation package (VASP). URL: https://www.vasp.at.

12. The Cambridge Crystallographic Data Centre (CCDC). UKR: https://www.ccdc.cam.ac.uk. [Crystallographic data for D-FF structure [13] have been deposited in the Cambridge Crystallographic Data Centre, no. CCDC 1853771; Crystallographic data for L-FF [14] is correspond to No. CCDC 16337].

13. Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Arkhipov S.G., Vasilev S.G., Bystrov V.S., Gruzdev D.A., Waliszek M., Svitlyk V., Shur V.Ya., Marfa L., Kholkin A.L. Chirality-Dependent Growth of Self-Assembled Diphenylalanine Microtubes. Crystal Growth & Design, 2019, vol. 19, pp. 6414-6421, DOI:https://doi.org/10.1021/acs.cgd.9b00884.

14. G¨orbitz C.H. Nanotube formation by hydrophobic dipeptides. Chem Eur J., 2001, vol. 7, pp. 5153-5159.

15. Morrison I., Li J-C., Jenkins S., Xantheas S.S., Payne M.C., Ab-Initio Total Energy Studies of the Static and Dynamical Properties of Ice Ih. J. Phys. Chem. B, 1997, vol. 101, pp. 6146-6150.

16. Andrade-Filho T., Martins T.C., Ferreira F.F., Alves W.A., Rocha A.R. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc., 2016, vol. 135, p. 185.

17. HyperChem: Tools for Molecular modeling (release 8) (Hypercube, Inc., Gainnesville, 2002). URL: http://www.hyper.com/?tabid=360.

18. Filippov S.V., Lihachev I.V., Bystrov V.S. Vizual'no-differencial'nyy analiz strukturnyh perestroek vodnyh klasternyh struktur, nahodyaschihsya vo vnutrenney polosti nanotrubok. Aktual'nye voprosy biologicheskoy fiziki i himii, 2020, t. 5, № 3. - V pechati. @@[Filippov S.V., Lihachyov I.V., Bystrov V.S. Vizual'no-differencial'nyj analiz strukturnyh perestroek vodnyh klasternyh struktur, nahodyashchihsya vo vnutrennej polosti nanotrubok. Russian Journal of Biological Physics and Chemistry, 2020, vol. 5, no. 3. - In print. (In Russ.)]

19. Bai J., Wang J., X. C. Zeng X.C. Multiwalled ice helixes and ice nanotubes. Proc. Nat. Acad. Sci. USA, 2006, vol. 103, no. 52, pp. 19664-19667.

20. Shayeganfar F., Beheshtian J., Shahsavari R. First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes. Langmuir, 2018, vol. 34, no. 37, pp. 11176-11187.

21. Bordonskiy G.S., Orlov A.O. Issledovanie segnetoelektricheskih fazovyh perehodov vody v nanoporistyh silikatah pri sovmestnyh elektricheskih shumovyh i kalorimetricheskih izmereniyah. Fizika tverdogo tela, 2014, t. 56, № 8, s. 1575-1582.

22. Bodor N., Gabanyi Z., Wong A. A new method for the estimation of partition coefficient. J. Am. Chem. Soc., 1989, vol. 111, p. 3783.

23. Gavezotti A. The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and solid-state organic reactivity. J. Am. Chem. Soc., 1983, vol. 105, p. 5220.

24. Winarto W., Yamamoto E., Yasuoka K. Water Molecules in a Carbon Nanotube under an Applied Electric Field at Various Temperatures and Pressures. Water, 2017, vol. 9, no. 7, p. 473.

25. Mikami F., Matsuda K., Kataura H., Maniwa Y. Dielectric Properties of Water inside Single-Walled Carbon Nanotubes. ACS Nano, 2009, vol. 3, no. 5, pp.1279-1287.


Login or Create
* Forgot password?