The skin of amphibians is a classic model object for the study of transepithelial ion transport mechanisms. Previously, we found that Na+ transport in frog skin epithelial cells is modulated by oxidizing and reducing agents. For the first time we showed that oxidized glutathione (GSSG) and drug glutoxim® (disodium salt of GSSG with a nano additive of a d-metal, PHARMA-VAM, Saint-Petersburg), mimic insulin effect and stimulate transepithelial Na+ transport when applied to the frog skin basolateral surface. Sigma-1 receptors are unique ligand-regulated molecular chaperones widely expressed in central nervous system and in peripheral tissues, including kidney and liver cells. Sigma-1 receptors interact with target proteins, including ion channels and receptors, and modulate many cellular processes. We have previously shown that sigma-1 receptor ligand neuroleptic trifluoperazine (TFP) inhibits Na+ transport in frog skin. It is known that some of the clinical cases require concomitant use of immunomodulators and neuroleptics. Thus, it was appropriate to study the involvement of sigma-1 receptors in glutoxim effect on Na+ transport in frog skin. Phenothiazine derivative neuroleptic TFP, the ligand of sigma-1 receptor, was used in our experiments. Using voltage-clamp technique, we have shown for the first time that frog skin preincubation with 20 mg/ml TFP attenuates the stimulatory effect of 100 mg/ml glutoxim on Na+ transport. The results indicate the involvement of sigma-1 receptors in signaling cascades triggered by glutoxim in frog skin epithelium and leading to Na+ transport stimulation and also suggest that a combined use of drug glutoxim and phenothiazine derivatives in clinical practice is undesirable.
frog skin, transepithelial Na+ transport, glutoxim, sigma-1 receptors, trifluoperazine
1. Natochin Yu.V. Osnovy fiziologii pochki. L.: Nauka, 1982, 184 s. @@[Natochin Yu.V. Fundamentals of kidney physiology. L.: Nauka, 1982, 184 p. (In Russ.)]
2. Krutetskaya Z.I., Lebedev O.E., Melnitskaya A.V., Antonov V.G., Nozdrachev A.D. Effect of disulfide containing compounds on Na+ transport in frog skin. Dokl. Akad. Nauk, 2008, vol. 421, № 5, rr. 709-712.
3. Rousseaux C.G., Greene S.F. Sigma receptors [σRs]: biology in normal and diseased states. J. Recept. Signal. Trans., 2016, vol. 36, pp. 327-388.
4. Hellewell S.B., Bruce A., Feinstein G., Orringer J., Williams W., Bowen W.D. Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur. J. Pharmacol., 1994, vol. 268, pp. 9-18.
5. Cobos E.J., Entrena J.M., Nieto F.R., Cendán C.M, Del Pozo E. Pharmacology and therapeutic potential of sigma (1) receptor ligands. Curr. Neuropharmacol., 2008, vol. 6, pp. 344-366.
6. Penke B., Fulop L., Szucs M., Frecska E. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr. Neuropharmacol., 2018, vol. 16, pp. 97-116.
7. Su T.-P., Hayashi T., Maurice T., Buch S., Ruoho A.E. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci., 2010, vol. 31, pp. 557-566.
8. Mel'nickaya A.V., Kruteckaya Z.I., Kruteckaya N.I., Antonov V.G. Trifluoperazin moduliruet transport Na+ v kozhe lyagushki. Aktual'nye voprosy biologicheskoy fiziki i himii, 2019, t. 4, № 1, s. 90-93. @@[Melnitskaya A.V., Krutetskaya Z.I., Antonov V.G., Krutetskaya N.I. Trifluoperazine modulates Na+ transport in frog skin. Russ. J. Biol. Phys. Chem., 2019, vol. 4, no. 1, rr. 90-93. (In Russ.)]
9. Schuster D.I., Arnold F.J., Murphy R.B. Purification, pharmacological characterization and photoaffinity labeling of sigma receptors from rat and bovine brain. Brain Res., 1995, vol. 670, pp. 14-28.
10. Boldyrev A.A., Bulygina E.R. Na/K-ATPase and oxidative stress. Ann. N.Y. Acad. Sci., 1997, vol. 834, pp. 666-668.
11. Firsov D., Robert-Nicoud M., Gruender S., Schild L., Rossier B.C. Mutational analysis of cysteine-rich domain of the epithelium sodium channel (ENaC): Identification of cysteines essential for channel expression at the cell surface. J. Biol. Chem., 1999, vol. 274, rr. 2743-2749.
12. Itzhak Y., Ruhland M., Krahling H. Binding of umespirone to the sigma receptor: evidence for multiple affinity states. Neuropharmacol., 1990, vol. 29, pp. 181-184.
13. Kruteckaya Z.I., Mel'nickaya A.V., Antonov V.G., Nozdrachev A.D. Antagonisty receptorov sigma-1 galoperidol i hlorpromazin moduliruyut vliyanie glutoksima na transport Na+ v kozhe lyagushki. DAN, 2019, t. 484, № 5, s. 629-632. @@[Krutetskaya Z.I., Melnitskaya A.V., Antonov V.G., Nozdrachev A.D. Sigma-1 receptor antagonists haloperidol and chlorpromazine modulate the effect of glutoxim on Na+ transport in frog skin. Dokl. Biochem. Biophys., 2019, vol. 484, rr. 63-65. (In Russ.)]
14. Carnally S.M., Johannessen M., Henderson R.M., Jackson M.B., Edwardson J.M. Demonstration of a direct interaction between σ-1 receptors and acid-sensing ion channels. Biophys. J., 2010, vol. 98, pp. 1182-1191.
15. Herrera Y., Katnik C., Rodriguez J.D., Hall A.A., Willing A., Pennypacker K.R., Cuevas J. Sigma-1 receptor modulation of acid-sensing ion channel (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J. Pharmacol. Exp. Ther., 2008, vol. 327, pp. 491-502.