VISUAL-DIFFERENTIAL ANALYSIS OF STRUCTURAL REALIGNATIONS WATER CLUSTER STRUCTURES LOCATED IN THE DOMAIN OF THE D-FF NANOTUBES
Abstract and keywords
Abstract (English):
In order to study of the structural features of water cluster structures (WCS), discovered during studies of the self-organization of diphenylalanine (FF) peptide nanotubes (L- and D-chiralities) inside their cavities, was performed 3D-modeling of D-FF nanotubes containing water in the channel cavity was performed. The simulation indicated the optimal number of water cluster molecules per unit cell (two turns of the spiral section), equal to 21 water molecules. To better understand the nature of structural rearrangements of the WCS that occur in the internal cavity of the D-FF channel during optimization, we developed a method of visual-differential analysis of conformational changes in biological macromolecules. Identifying (ID) and “hypsometric” projections were obtained: the outer surface of the water cluster structures located inside the D-FF PNT, the projections of the inner surface of the D-FF PNT channel. Analysis of the ID projections of water clusters in the initial and optimized states revealed a slight change (+0.568%) in the available surface of oxygen atoms and hydrogen atoms (-0.68%). A visual analysis of the ID projections revealed significant structural changes in the structure of the water cluster. To describe them, three “hypsometric maps” were used to compose complex “topographic maps” and hybrid (2D/3D) models, showing the regions most likely involved in the formation of stable hydrogen bonds and the nature of changes in the structure of the water cluster.

Keywords:
peptide nanotubes, PNT, diphenylalanine, FF-NT, visual differential, 3D, projection, hypsometric, model, Blender, PhotoReactor, G’MIC
Text
Publication text (PDF): Read Download
References

1. Bystrov V.S., Coutinho J., Zhulyabina O.A., Kopyl S.A., Zelenovskiy P.S., Nuraeva A.S., Tverdislov V.A., Filippov S.V., Kholkin A.L., Shur V.Ya. Modeling and physical properties of diphenylalanine peptide nanotubes, containing the water molecules. Ferroelectrics, 2020. - v pechati

2. Kim J., Han T.E., Kim Y. et al. Role of Water in Directing Diphenylalanine Assembly into Nanotubes and Nanowires. Adv. Mater., 2010, vol. 22, pp. 583-587.

3. Filippov S.V., Bystrov V.S. Vizual'no-differencial'nyy analiz strukturnyh osobennostey vnutrennih polostey dvuh hiral'nyh form difenilalaninovyh nanotrubok. Biofizika, 2020, t. 65, № 3, s. 445-452. DOI:https://doi.org/10.31857/S0006302920030035.

4. O'Boyle N.M., Banck M., James C.A. et al. Open Babel: An open chemical toolbox. J Cheminform, 2011, vol. 3, no. 33. DOI:https://doi.org/10.1186/1758-2946-3-33.

5. Ivanov A.O., Mischenko A.S., Tuzhilin A.A. Geometriya aminokislot i polipeptidov. Nanostruktury. Matematicheskaya fizika i modelirovanie, 2014, t. 10, № 1, s. 49-76.

6. Blender. Sayt programmy 3D modelirovaniya, animacii i renderinga. [Elektron. resurs]. URL: https://www.blender.org (data obrascheniya: 01.07.2020)

7. Filippov S.V. Programmnaya platforma Blender kak sreda modelirovaniya ob'ektov i processov estestvenno-nauchnyh disciplin (Preprint № 230, IPM im. M.V. Keldysha, 2018). DOI:https://doi.org/10.20948/prepr-2018-230. URL: http://keldysh.ru/papers/2018/prep2018_230.pdf

8. Filippov S.V., Sivozhelezov V.S. Metod postroeniya dinamicheskih molekulyarnyh modeley v srede otkrytoy 3D-platformy Blender na primere β2-adrenoreceptora. Doklady Mezhdunarodnoy konferencii "Matematicheskaya biologiya i bioinformatika". Pod red. V.D. Lahno. Puschino: IMPB RAN, 2018, t. 7, № e45. DOI:https://doi.org/10.17537/icmbb18.23.

9. Filippov S.V. Metod identifikacii atomov makromolekul, vizualiziruemyh v 3D redaktorah (Preprinty № 97, IPM im. M.V. Keldysha, 2019). DOI:https://doi.org/10.20948/prepr-2019-97. URL: https://keldysh.ru/papers/2019/prep2019_97.pdf

10. Filippov S.V., Polozov R.V., Sivozhelezov V.S. Vizualizaciya prostranstvennyh struktur (bio)makromolekul v vide podobnyh gipsometricheskim kart (Preprint № 61, IPM im. M.V. Keldysha, M., 2019). DOI:https://doi.org/10.20948/prepr-2019-61. URL: https://keldysh.ru/papers/2019/prep2019_61.pdf

11. Schneider C.A., Rasband W.S., Eliceiri K.W. Nature Methods, 2012, vol. 9 (7), no. 671.

12. Photo Reactor - Nodal Image Processor. URL: https://www.mediachance.com/reactor/index.html.

13. G’MIC is a full-featured open-source framework for digital image processing. URL: https://gmic.eu.


Login or Create
* Forgot password?