The article formulates a hypothesis about the possibility of a unified solution of two fundamental problems of biology on the basis of participation of the Auger effect as a filter in the evolutionary processes; these are a) the inhomogeneity of the elemental composition of living systems in terms of atomic weight (the existence of “leaders” and “outsiders”) and b) the unique stability of homochiral biopolymers with respect to fluctuations of loci of opposite symmetry. We have shown that both paradoxical phenomena can be explained on the basis of one and the same radiation process - Auger cascade after the formation of a vacancy in the K-shell with the subsequent "Coulomb explosion" in the biopolymer, which, however, is impeded by electronic neutralization - "flooding" from the rest of the intact biopolymer chains. It was found that the high damageability is associated with the presence of additional electronic shells, as well as with the existence of chiral deformation of the biopolymer. These two circumstances make it possible to resolve the paradoxes both qualitatively and quantitatively. In particular, the proposed hypothesis explains the existence of carbon life and the impossibility of silicon life. In addition, the enhancement of destruction from the Auger cascade with an increase in the chiral angle revealed special points of the damage to the chiral biopolymer - the contact areas of two domains with different chiralities, which are “washed out” by ionizing radiation with an increased probability, preventing the formation of heterochiral polymers. It is noted that the processes underlying these two paradoxes are, apparently, good examples of the general concept of “complexity”. It is indicated that the Auger cascade is only one of the types of subthreshold radiation physics processes that can explain a number of low-temperature phenomena in biology.
biopolymers, paradoxes in biology, elemental composition, chirality, radiation, Auger cascade, “Coulomb explosion”, electronic neutralization, “flooding”
1. Chernavskiy D.S. Sinergetika i informaciya: Dinamicheskaya teoriya informacii. KD Librokom, 2016, 300 s. @@Chernavsky D.C. Synergetics and Information: Dynamic Information Theory. KD Librokom, 2016, 300 p. (In Russ.)
2. Sinay Ya.G. Dinamicheskie sistemy s uprugimi otrazheniyami. UMN, 1970, t. 2, s. 141-192. @@Sinai Ya.G. Dynamical Systems with Elastic Reflections. UMN, 1970, vol. 2, pp. 141-192. (In Russ.)
3. Kun T. Struktura nauchnyh revolyuciy. 1969, M.: Progress, 1977, 300 s. @@Kuhn T. The structure of scientific revolutions. 1969, Moscow: Progress, 1977, 300 p. (In Russ.)
4. Holton Dzh. Tematicheskiy analiz nauki. M.: Progress, 1981, 384 s. @@Holton J. Thematic analysis of science. M.: Progress, 1981, 384 p. (In Russ.)
5. Gol'danskiy V.I., Kuz'min V.V. Spontannoe narushenie zerkal'noy simmetrii v prirode i proishozhdenie zhizni. UFN, 1989, t. 157, s. 3-50. DOI:https://doi.org/10.3367/UFNr.0157.198901a.0003. @@Gol'dansky V.I., Kuzmin V.V. Spontaneous breaking of mirror symmetry in nature and the origin of life. UFN, 1989, vol. 157, pp. 3-50. (In Russ.)
6. Tverdislov V.A., Malyshko E.V. O zakonomernostyah spontannogo formirovaniya strukturnyh ierarhiy v hiral'nyh sistemah nezhivoy i zhivoy prirody. UFN, 2019, t. 189, № 4, s. 375-385. DOI:https://doi.org/10.3367/UFNr.2018.08.038401. @@Tverdislov V.A., Malyshko E.V. Regularities of spontaneous formation of structural hierarchies in chiral systems of inanimate and living nature. UFN, 2019, vol. 189, no. 4, pp. 375-385. (In Russ.)
7. Ivanickiy G.R. XXI vek: Chto takoe zhizn' s tochki zreniya fiziki. UFN, 2010, t. 180, № 4, s. 337-369. DOI:https://doi.org/10.3367/UFNr.0180.201004a.0337. @@Ivanitsky G.R. XXI century: What is life from the point of view of physics. UFN, 2010, vol. 180, no. 4, pp. 337-369. (In Russ.)
8. Sherrington D. Physics and Complexity. Phil. Trans. R. Soc. A, 2010, vol. 368, pp. 1175-1189. DOI:https://doi.org/10.1098/rsta.2009.0208.
9. Milan Randi, Dejan Plav. On the Concept of Molecular Complexity. CROATICA CHEMICA ACTA, CCACAA, 2002, vol. 75, no. 1, pp. 107-116.
10. Mazzocchi F.Complexity in biology. Exceeding the limits of reductionism and determinism using complexity. EMBO Reports, 2008, vol. 9, no. 1, pp.10-4. DOI:https://doi.org/10.1038/sj.embor.7401147.
11. Migdal A.B. Poiski istiny. M.: Molodaya gvardiya, 1983, 239 s. @@Migdal A.B. The search for truth. Moscow: Molodaya gvardiya, 1983, 239 p. (In Russ.)
12. Ivanickiy G.R. Zapominanie sluchaynogo vybora unichtozhaet al'ternativy (otvet na kommentariy k stat'e “XXI vek: chto takoe zhizn' s tochki zreniya fiziki”). UFN, 2011, t. 181, № 4, s. 451-454. @@Ivanitsky G.R. Memorizing a random choice destroys alternatives (response to the commentary to the article “XXI century: what is life from the point of view of physics). UFN, 2011, vol. 181, no. 4, pp. 451-454. (In Russ.)
13. Kist A.A. Fenomenologiya biogeohimii i bioorganicheskoy himii. Tashkent: Fan, 1987. @@Kist A.A. Phenomenology of biogeochemistry and bio-organic chemistry. Tashkent: Fan, 1987. (In Russ.)
14. Parilis E.S., Turaev N.Yu. et. al. Atomic Collisions on Solid Surfaces. Amsterdam-London-New York-Tokyo: North-Holland, 1993, vol. 93, no. 3, 382 p. DOI: 10. 1016/0168-583X(94)95492-5.
15. Landau L.D., Lifshic E.M. Teoreticheskaya fizika v 10 tomah. Tom 3. Kvantovaya mehanika (nerelyativistskaya teoriya). M.: Nauka, 1989, 768 s. @@Landau L.D., Lifshits E.M. Theoretical physics in 10 volumes. Volume 3. Quantum mechanics (nonrelativistic theory). Moscow: Nauka, 1989, 768 p. (In Russ.)
16. Migdal A.B. Kachestvennye metody v kvantovoy teorii. M.: Nauka, 1975, 336 s. @@Migdal A.B. Qualitative methods in quantum theory. Moscow: Nauka, 1975, 336 p. (In Russ.)
17. Varley J.A. Mechanism for the Displacement of Ions in an Ionic Lattice. Nature, 1954, vol. 174, pp. 886-887. DOI:https://doi.org/10.1038/174886a0.
18. Dexter D.L. Varley Mechanism for Defect Formation in Alkali Halides. Physical Review, 1960, vol. 118, p. 934.
19. Vavilov V.S., Kiv A.E., Niyazova O.R. Mehanizmy obrazovaniya i migracii defektov v poluprovodnikah.M.: Nauka, 1981, 368 s. @@Vavilov V.S., Kiv A.E., Niyazova O.R. Mechanisms of the formation and migration of defects in semiconductors : Nauka, 1981, 368 p. (In Russ.)
20. Oksengendler B.L., Turaeva N.N. Radiacionnaya fizika kondensirovannyh sred. Koncepcii. Tashkent: Fan, 2006, t. 1, 136 s. @@Oksengendler B.L., Turaeva N.N. Radiation physics of condensed media. Concepts. Tashkent: Fan, 2006, vol. 1, 136 p. (In Russ.)
21. Paster L. Izbrannye trudy v dvuh tomah. M.: AN SSSR, 1960, 836 s. @@Pasteur L. Selected Works in Two Volumes. Moscow: AN SSSR, 1960, 836 p. (In Russ.)
22. Vant-Goff Ya.G. Izbrannye trudy po himii M: Nauka, 1984, 544 s. @@Van't Hoff Ya.G. Selected works in chemistry. Moscow: Nauka, 1984, 544 p. (In Russ.)
23. Avetisov V.A., Gol'danskiy V.I. Fizicheskie aspekty narusheniya zerkal'noy simmetrii bioorganicheskogo mira. UFN, 1996, t. 166, № 8, s. 873-891. @@Avetisov V.A., Gol'dansky V.I. Physical aspects of breaking the mirror symmetry of the bioorganic world. UFN, 1996, vol. 166, no. 8, pp. 873-891. (In Russ.)
24. Tverdislov V.A, Yakovenko L.V., Zhavoronkov A.A. Hiral'nost' kak problema biohimicheskoy fiziki. Ros.him.zh., 2007, t. 51, № 1, s. 13-22. @@Tverdislov V.A., Yakovenko L.V., Zhavoronkov A.A. Chirality as a problem in biochemical physics. Ros.khim. zh., 2007, vol. 51, no. 1, pp. 13-22. (In Russ.)
25. Tverdislov V.A., Malyshko E.V. Hiral'nyy dualizm kak sistemnyy faktor ierarhicheskogo strukturoobrazovaniya v molekulyarno biologicheskoy evolyucii. Slozhnost'. Razum. Postneklassika, 2016, № 1, s. 78-83. DOI:https://doi.org/10.12737/18816. @@Tverdislov V.A., Malyshko E.V. Chiral dualism as a systemic factor of hierarchical structure formation in molecular biological evolution.Complexity. Mind. Postneklassika, 2016, no. 1, pp. 78-83. (In Russ.)
26. Kosevich A.M. Fizicheskaya mehanika real'nyh kristallov. Kiev: Naukova Dumka, 1981, 328 s. @@Kosevich A.M. Physical mechanics of real crystals. Kiev: Naukova Dumka, 1981, 328 p. (In Russ.)
27. Roberts J. Notes on Molecular Orbital Calculations. London. Amsterdam Don Mills, Ontario. Sydney. Tokyo: the benjamin cummimgs publlshing company, INC., 1962, 156 p.
28. Vol'kenshteyn M.V. Obschaya biofizika. M.: Nauka, 1978, 592 s. @@Volkenstein M.V. General biophysics. M.: Nauka, 1978, 592 p. (In Russ.)
29. Yunusov M.S., Oksengendler B.L. i dr. Podporogovye radiacionnye effekty v poluprovodnikah. Tashkent: Fan, 1987, 222 s. @@Yunusov M.S., Oksengendler B.L. et al. Subthreshold radiation effects in semiconductors. Tashkent: Fan, 1987, 222 p. (In Russ.)
30. Gol'danskiy V.I., Trahtenberg L.I., Flerov V.N. Tunnel'nye yavleniya v himicheskoy fizike. Moskva: Nauka, 1986, 296 s. @@Gol'dansky V.I., Trakhtenberg L.I., Flerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986, 296 p. (In Russ.)
31. Oksengendler B.L. The inverson--a new type of defecton. JETP Letters, 1976, vol. 24, no. 1, pp. 9-11.
32. Oksengendler B.L, Turaeva N.N. Periodic Landau-Zener problem in long-range migration. Journal of Experimental and Theoretical Physics, 2006, vol. 103, no. 3, pp. 411-414.
33. Oksengendler B.L., Turaeva N.N., Zacepin A.F. i dr. Selektivnoe radiacionnoe vozdeystvie na nanopolimery i ego primenenie k degradacii aktual'nyh virusov. Mezhdunarodnaya konferenciya « Radiacionnaya fizika tverdogo tela», Sevastopol', 2020. ( v pechati) @@Oksengendler B.L., Turaeva N.N., Zatsepin A.F. et al. Selective radiation action on nanopolymers and its application to the degradation of actual viruses.International conference “Radiation Physics of Solids”, Sevastopol, 2020. (in press) (In Russ.)
34. Oksengendler B.L., Turaeva N.N.,Suleymanov S.H. i dr. Radiacionnaya destrukciya kvaziodnomernyh molekulyarnyh ob'ektov: osobennosti i primenenie. DAN AN RUz, 2020. (v pechati) @@Oksengendler B.L., Turaeva N.N., Suleimanov S.Kh. et al. Radiation destruction of quasi-one-dimensional molecular objects: features and applications. DAN AN RUz, 2020. (in press) (In Russ.)