SOLITON EXCITATION DELIVERY AND STIMULATION OF BIOCHEMICAL REACTIONS FOR MEDICAL PURPOSES IN LIVING SYSTEMS
Abstract and keywords
Abstract (English):
The article examines the actual problem of drug delivery on a fundamentally new basis. In contrast to the idea of using nanoparticles of the "core shell" type, where core is a healing substance, and shell is an organic coating that overcomes physiological barriers, the new concept is associated with the use of special properties of soliton excitation on biopolymer own chains, which have verniers "stuffed" with elastic, electronic vibrational or spin excitations moving along with the vernier over long distances (without decay) to the region of the biochemical reaction zone, where the excitation decays nonradiatively on the substrate producing a therapeutic effect. For detailed approbation of the idea, the Frenkel-Kontorova crowdion model (1938) was used as a soliton, but taking into account, first, the modified electronic structure of the vernier, second, its motion along the biopolymer, and third, its possible chirality (helicity) and fourthly, the fractality of its atomic structure. All these elements of analysis, which are components of the now gaining strength of the powerful Complexity methodology, made it possible to examine from various angles the totality of characteristics of the soliton method of delivering a therapeutic state (and not a drug!) And assess the possibilities of this new side of nanomedicine. The results obtained on the first, simplest, nonlinear, one-dimensional model of the Frenkel-Kontorova crowdion demonstrated new interesting possibilities of complex quasiparticles - the basic concept of condensed matter physics.

Keywords:
condensed matter physics, biology, medicine, complexity, drug delivery, soliton, Frenkel-Kontorova crowdion, nonradiative transitions, biochemical reaction
Text
Text (PDF): Read Download
References

1. Leschenko V.G., Il'ich G.K. Medicinskaya i biologicheskaya fizika. Minsk: Novoe znanie, INFRA-M, 2012, 552 c. @@Leshchenko V.G., Ilyich G.K. Medical and Biological Physics. Minsk: New Knowledge, INFRA-M, 2012, 552 p. (In Russ.)

2. Wood A.W. Physiology, Biophysics, and Biomedical Engineering. CRC Press, 2012, 784 p.

3. Marder M.P. Condensed Matter Physics. John Wiley & Sons, 2010, 984 p.

4. Ivanickiy G.R. XXI vek: Chto takoe zhizn' s tochki zreniya fiziki. UFN, 2010, t. 180, № 4, s. 337-369. DOI:https://doi.org/10.3367/UFNr.0180.201004a.033 7.

5. Mackey M., Glass L. From Clocks to Chaos: The Rhythms of Life. : Princeton University Press, 1988, 272 p.

6. Havlin S., Buldyrev S.V., Goldberger A.L., Stanley H.E. et.al. Fractals in Biology and Medicine. Chaos. Solitons & Fractals, 1995, vol. 6, pp. 171-201. DOI:https://doi.org/10.1016/0960-0779(95)80025-C.

7. Sherrington D. Physics and complexity. Phil. Trans. R. Soc. A, 2010, vol. 368, pp. 1175-1189. DOI:https://doi.org/10.1098/rsta.2009.0208.

8. Bonchev D., Seitz W. The Concept of Complexity in Chemistry. Chapter in book: Concepts in Chemistry: A Contemporary Challenge. Editor Rouvray D. H., Wiley, 1997, pp. 353-381.

9. Suzdalev I.P. Nanotehnologiya: fiziko-himiya nanoklasterov, nanostruktur i nanomaterialov. Kom Kniga, 2006, 592 s. @@Suzdalev I.P. Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials. Kom Kniga, 2006 , 592 p. (In Russ.)

10. Feder E. Fraktaly. per. s angl. M.: URSS, Lenand, 2014, 256 s. @@Feder E. Fractals. M.: URSS, Lenand, 2014, 256 p. (In Russ.)

11. Physics of Low Dimensional Systems. Editor Morán-López: Springer, 2001, 492 p.

12. Olemskoy A.I., Kacnel'son A.A. Sinergetika kondensirovannoy sredy. M.: Editorial URSS, 2003, 336 c. @@Olemskoy A.I., Katsnelson A.A. Synergetics of Condensed Matter. M.: Editorial URSS, 2003, 336 p. (In Russ.)

13. Tverdislov V.A., Malyshko E.V. O zakonomernostyah spontannogo formirovaniya strukturnyh ierarhiy v hiral'nyh sistemah nezhivoy i zhivoy prirody. UFN, 2019, t. 189, № 4, s. 375-385. DOI:https://doi.org/10.3367/UFNr.2018.08.038401.

14. Oksengendler B.L., Turaeva N., Ashirmetov A., Ashurov Kh.B. Nanofractals, Their Properties and Applications. In book: Horizons in World Physics.: Nova Science Publishers, 2019, vol. 298, pp. 1-41.

15. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii. M.: Nauka, 1994, 383 s. @@Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Synergetics and fractals in materials science. Moscow: Nauka, 1994, 383 p. (In Russ.)

16. Dash J.G. Between Two and Three Dimensions. Physics Today , 1985, vol. 38, no. 12, pp. 26-35. DOI:https://doi.org/10.1063/1.880994.

17. Gol'danskiy V.I., Kuz'min V.V. Spontannoe narushenie zerkal'noy simmetrii v prirode i proishozhdenie zhizni. UFN, 1989, t. 157, s. 3-50. DOI:https://doi.org/10.3367/UFNr.0157.198901a.0003.

18. Villi K., Det'e V. Biologiya, Biologicheskie processy i zakony. Moskva: Mir, 1974, 821 s. @@Willie K., Child V. Biology, Biological processes and laws. Moscow: Mir, 1974, 821 p. (In Russ.)

19. Vol'kenshteyn M.V. Obschaya biofizika. M.: Nauka, 1978, 592 s. @@Volkenstein M.V. General biophysics. M.: Nauka, 1978, 592 p. (In Russ.)

20. Prigozhin I., Stengers I. Poryadok iz haosa. Novyy dialog cheloveka s prirodoy. M.: Progress, 1986, 432 s. @@Prigogine I., Stengers I. Order from chaos. A New Dialogue between Man and Nature. M.: Progress, 1986, 432 p. (In Russ.)

21. Liebovitch L.S. Fractals and Chaos Simplified for the Life Sciences. Oxford University Press, 1998, 288 p.

22. Dinicola S., D’Anselmi F., Pasqualato A. et.al. A Systems Biology Approach to Cancer: Fractals, Attractors, and Nonlinear Dynamics. OMICS A Journal of Integrative Biology, 2011, pp. 1-12. DOI:https://doi.org/10.1089/omi.2010.0091.

23. Gilmor R. Prikladnaya teoriya katastrof. M.: Mir, 1981, t. 1, 344 s. @@Gilmore R. Applied catastrophe theory. M.: Mir, 1981, vol. 1, 344 p. (In Russ.)

24. Tverdislov V.A, Yakovenko L.V., Zhavoronkov A.A. Hiral'nost' kak problema biohimicheskoy fiziki. Ros.him.zh., 2007, t. 51, № 1, s. 13-22. @@Tverdislov V.A, YAkovenko L.V., ZHavoronkov A.A. Hiral'nost' kak problema biohimicheskoj fiziki. Ros. him. zh., 2007, vol. 51, no. 1, pp. 13-22. (In Russ.)

25. Li Peng, Yu Lei, Yang Jingyun, Lo et.al.Interaction between the progression of Alzheimer’s disease and fractal degradation. Neurobiology of Aging, 2019, vol. 83, pp. 21-30. DOI:https://doi.org/10.1016/j.neurobiolaging.2019.08.023.

26. Oksengendler B.L., Ivanov N.V., Ashirmetov A.Kh., Im V.K., Maksimov S.E. Study of dynamics of some human diseases on the base of fractal approach ("range" method). Open J Cardiol Heart Dis., 2017, vol. 1, no. 1. OJCHD.000504. DOI:https://doi.org/10.31031/OJCHD.2017.01.000504.

27. Letfullin R.R., George T.F.Computational Nanomedicine and Nanotechnology: Lectures with Computer Practicums. Switzerland: Springer, 2016, 306 p.

28. Nikolis G., Prigozhin I. Poznanie slozhnogo. M.: Mir, 1990, 344 s. @@Nicolis G., Prigogine I. Cognition of the complex. M.: Mir, 1990, 344 p. (In Russ.)

29. Nikolis Dzh. Dinamika ierarhicheskih sistem: Evolyucionnoe predstavlenie. M.: Mir, 1989, 488 s. @@Nicolis J. Dynamics of Hierarchical Systems: Evolutionary Representation. Moscow: Mir, 1989, 488 p. (In Russ.)

30. Mathematics of Complexity and Dynamical Systems. Editor Meyers R.A., New York: Springer-Verlag, 2011, 1858 p.

31. Maiti S., Kumar S.K.Introductory Chapter: Drug Delivery Concept.: Intech Open, 2017, pp. 1-12.

32. Davydov A.S. Solitony v kvaziodnomernyh molekulyarnyh strukturah. UFN, 1982, t. 138, s. 603-643. DOI:https://doi.org/10.3367/UFNr.0138.198212c.0603. @@Davydov A.S. Solitony v kvaziodnomernyh molekulyarnyh strukturah. UFN, 1982, vol. 138, pp. 603-643. (In Russ.)

33. Heeger A.J., Pethig R. Charge Storage and Charge Transport in Conducting Polymers: Solitons, Polarons and Bipolarons. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, vol. 314, no. 1528, pp. 17-35. DOI:https://doi.org/10.1098/rsta.1985.0005.

34. Pelinovskii E.N., Slyunyaev A.V. Generation and interaction of large-amplitude solitons. Journal of Experimental and Theoretical Physics, 1998, vol. 67, no. 9, pp. 628-633.

35. Pascual P.J, Vázquez L. Sine-Gordon solitons under weak stochastic perturbations. Phys. Rev.B, 1985, vol. 32, p. 8305. DOI:https://doi.org/10.1103/PhysRevB.32.8305.

36. Kovarskiy V.A. Kvantovye processy v biologicheskih molekulah. Fermentativnyy kataliz. UFN, 1999, t. 169, № 8, s. 889-908. @@Kovarskij V.A. Kvantovye processy v biologicheskih molekulah. Fermentativnyj kataliz. UFN, 1999, vol. 169, no. 8, pp. 889-908. (In Russ.)

37. Frenkel' Ya.I. Vvedenie v teoriyu metallov. M.: Fizmatgiz, 1958, 368 s. @@Frenkel Ya.I. Introduction to the theory of metal. Moscow: Fizmatgiz, 1958,368 p. (In Russ.)

38. Braun O.M., Kishvar' Yu.S. Model' Frenkelya - Kontorovoy, Koncepcii, Metody, Prilozheniya. Fizmatlit, 2008, 536 c. @@Braun O.M., Kishvar' YU.S. Model' Frenkelya - Kontorovoj, Koncepcii, Metody, Prilozheniya. Fizmatlit, 2008, 536 p. (In Russ.)

39. Medvedev E.S., Osherov V.I. Teoriya bezyzluchatel'nyh perehodov v mnogoatomnyh molekulah. Moskva: Nauka, 1983, 280 s. @@Medvedev E.S., Osherov V.I. Theory of nonradiative transitions in polyatomic molecules. Moscow: Nauka, 1983, 280 p. (In Russ.)

40. Landau L.D., Lifshic E.M. Teoreticheskaya fizika v 10 tomah. Kvantovaya mehanika (nerelyativistskaya teoriya). M.: Nauka, 1989, t. 3, 768 s. @@Landau L.D., Lifshits E.M. Theoretical physics in 10 volumes. Quantum mechanics (nonrelativistic theory). Moscow: Nauka, 1989, vol. 3, 768 p. (In Russ.)

41. Kosevich A.M. Fizicheskaya mehanika real'nyh kristallov. Kiev: Naukova Dumka, 1981, 328 s. @@Kosevich A.M. Physical mechanics of real crystals. Kiev: Naukova Dumka, 1981, 328 p. (In Russ.)

42. Davydov A.S. Biologiya i kvantovaya mehanika. Kiev: Naukova dumka, 1979, 296 s. @@Davydov A.S. Biology and Quantum Mechanics. Kiev: Naukova Dumka, 1979, 296 p. (In Russ.)

43. Peng C.-K., Boldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides. Phys. Rev., 1994, vol. 49, pp. 1685-1689. DOI:https://doi.org/10.1103/PhysRevE.49.1685.

44. Abdullaev F. Optical solitons in random media. Chapter 2 in Progress in Optics vol.48, Editor E. Wolf: Elsevier, 2005, pp. 1-55. DOI:https://doi.org/10.1016/S0079-6638(05)48002-6.

45. Zayman Dzh. Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennyh sistem. M.: Mir, 1982, 592 s. @@Ziman J. Models of disorder. Theoretical physics of uniformly disordered systems. M.: Mir, 1982, 592 p. (In Russ.)

46. Brandt N.B., Kul'bachinskiy V.A. Kvazichasticy v fizike kondensirovannogo sostoyanii. M.: Fizmatlit, 2005, 632 s. @@Brandt N.B., Kulbachinsky V.A. Quasiparticles in Condensed Matter Physics. Moscow: Fizmatlit, 2005, 632 p. (In Russ.)


Login or Create
* Forgot password?