USING OF FILM DOSIMETRY AND SIMULATION OF THE DEPTH DISTRIBUTION OF THE ABSORBED DOSE AT THE IRRADIATION OF MOUSE CELLS WITH LOW DOSES OF PROTONS ON THE U-150 CYCLOTRON
Abstract and keywords
Abstract (English):
The sensitivity of cultured mesenchymal stromal stem cells (MSC) obtained from mouse bone marrow to irradiation with 32 MeV protons and the relative biological efficiency (RBE) of protons in the low dose range were studied. The survival of MSCs after irradiation was assessed by the change in the number of cells and in their clonogenic activity. Dosimetry of proton radiation was performed using an EBT3 radiochromic film, which was irradiated under the same conditions as the irradiated cells. For this, the film samples were placed in similar cylindrical tubes in the culture medium, simulating the conditions for irradiation of the cell suspension. The distribution of the energy release of protons during the passage of a particle beam through the samples under study was calculated using the SRIM-2013-Pro software. It has been shown that both the total number of MSCs and the number of MSCs capable of proliferation decrease with an increase in the proton irradiation dose. Moreover, cells with clonogenic activity are more sensitive to inactivation by protons than the general population of irradiated MSCs. When comparing the sensitivity of the clonogenic activity of MSCs to irradiation with protons and gamma rays, it was shown that cells in the range of low doses (from 0.15 to 0.6 Gy) are more sensitive to the action of protons. When calculating the RBE of protons from the data obtained, an increase in this indicator was shown in the indicated dose range from 1.54 to 2.07.

Keywords:
accelerated particles, protons, linear energy transfer, dosimetry, dosimetry film EBT3, RBE, relative biological effectiveness, gamma radiation, mesenchymal stem cells, clonogenic activity
Text
Publication text (PDF): Read Download
References

1. Tommasino F., Durante M. Proton radiobiology. Cancers, 2015, vol. 7, no. 1, rr. 353-381.

2. Dzhoyner M.S., Van der Kogel' O.Dzh. Osnovy klinicheskoy radiobiologii. Per. s angl. M.: BINOM. Laboratoriya znaniy, 2013, 600 s. @@Joiner M., van der Kogel A., Eds., Basic Clinical Radiobiology Fourth Edition, Hodder Arnold Publication, London, 391 r. (In Russ.)

3. Jones B. Proton radiobiology and its clinical implications. Ecancer, 2017, vol. 11, r. 777.

4. Vorozhcova S.V., Ivanov A.A. Effekty porazheniya i postluchevoy reparacii hromosomnogo apparata kletok epiteliya rogovicy myshey posle oblucheniya protonami s energiey 25 MeV. Aviakosmicheskaya i ekologicheskaya medicina, 2012, t. 46, № 4, s. 27-31. @@Vorozhtsova S.V., Ivanov A.A. Effects of damage and post-radiation reparation of cornea epithelium cells chromosomal apparatus in mice following irradiation by protons with the energy of 25 MeV. Aerospace and environmental medicine, 2012, vol. 46, no. 4, pp. 27-31. (In Russ.)

5. Hvostunov I.K., Pyatenko V.S., Shepel' N.N., Korovchuk O.N., Golub E.V., Zhironkina A.S, Hvostunova T.I, Lychagin A.A. Analiz hromosomnyh aberraciy v kletkah mlekopitayuschih pri vozdeystvii razlichnyh vidov ioniziruyuschego izlucheniya. Radiaciya i risk, 2013, t. 22, № 4, s. 43-59. @@Khvostunov I.K., Pyatenko V.S., Shepel N.N., Korovchuk O.N., Golub E.V., Zhironkina A.S., Khvostunova T.I., Lychagin A.A. Analysis of chromosome aberrations induced in mammalian cells after exposure to different types of ionizing radiation. Radiation and risk, 2013, vol. 22, no. 4, pp. 43-59. (In Russ.)

6. Leibacher J., Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Therapy, 2016, vol. 7, no. 7, rr.1-12.

7. Gao Z., Zhang Q., Han Y., Cheng X., Lu Y., Fan L., Wu Z. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy, 2012, vol. 14, no. 3, rr. 267-73.

8. Moskaleva E.Yu., Semochkina Yu.P., Rodina A.V., Chukalova A.A., Posypanova G.A. Vliyanie oblucheniya na mezenhimal'nye stvolovye kletki kostnogo i golovnogo i mozga myshi i ih sposobnost' inducirovat' opuholi. Radiacionnaya biologiya. Radioekologiya, 2017, t. 57, № 3, s. 245-256. @@Moskaleva E.Y., Semochkina Y.P., Rodina A.V., Chukalova A.A., Posypanova G.A. Radiation biology. Radioecology, 2017, vol. 57, no. 3, rr. 245-256. (In Russ.)

9. François S., Bensidhoum M., Mouiseddine M., Mazurier C., Allenet B., Semont A. et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells, 2006, vol. 24, rr. 1020-1019.

10. Chung H., Lynch B., Samant S. High-precision GAFCHROMIC EBT film-based absolute clinical dosimetry using a standard flatbed scanner without the use of a scanner non-uniformity correction. J.Appl Clin Med Phys., 2010, vol. 11, no. 2, rr. 101-115.

11. Kirby D., Green S., Palmans H., Hugtenburg R., Wojnecki C., Parker D. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys. Med. Biol., 2010, vol. 55, rr. 417-433.

12. Ziegler J.F. SRIM-2003. Nuclear Instruments and Methods in Physics Research: Section B, 2004, vol. 219-220, pp. 1027-1036.

13. Semochkina Yu.P., Rodina A.V., Moskaleva E.Yu., Zhorova E.S., Saprykin V.P., Arzumanov S.S., Safronov V.V. Zlokachestvennaya transformaciya mezenhimal'nyh stvolovyh kletok iz raznyh tkaney myshi posle smeshannogo gamma-neytronnogo oblucheniya in vitro. Med. radiologiya i radiacionnaya bezopasnost', 2019, t. 64, № 1, s. 5-14. @@Semochkina Yu.P., Rodina A.V., Moskaleva E.Yu., Zhorova E.S., Saprykin V.P., Arzumanov S.S., Safronov V.V. Malignant transformation of mesenchymal stem cells from different mouse tissues after mixed gamma-neutron irradiation in vitro. Med. radiology and radiation safety, 2019, vol. 64, no. 1, rr. 5-14. (In Russ.)

14. Hojo H., Dohmae T., Hotta K., Kohno R., Motegi A., Yagishita A., Makinoshima H., Tsuchihara K., Akimoto T. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak. Radiat Oncol., 2017, vol. 12, r. 111.

15. Oeck S., Szymonowicz K., Wiel G., Krysztofiak A., Lambert J., Koska B., Iliakis G., Timmermann B., Jendrossek V. Relating Linear Energy Transfer to the Formation and Resolution of DNA Repair Foci After Irradiation with Equal Doses of X-ray Photons, Plateau, or Bragg-Peak Protons.Int. J. Mol. Sci., 2018, vol. 19, r. 3779.

16. Ray S., Cekanaviciute E., Lima I., Sørensen B., Costes S.Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers.Int J Particle Ther., 2018, vol. 5, no. 1, rr. 15-24.


Login or Create
* Forgot password?