STUDY OF THE TECHNOLOGY OF THE RECOMBINATE TARGET PROTEIN SELECTIVE LABELING AND DEVELOPMENT OF THE SYNTHETIC ROUTES FOR THE MODIFIED CDTE QUANTUM DOTS SYNTHESIS IN AQUEOUS SOLUTIONS
Abstract and keywords
Abstract (English):
This paper considers the proposed procedure for reversible labeling of target proteins using fluorescent labels and probes. New fluorophores based on quantum dots (QDs CdTe) containing a molecular address (chelate complexes of Ni2+ with nitrilotriacetic acid and its derivatives) were proposed, capable of forming strong chelates with a hexahistidine tag localized at a given site of the polypeptide chain of the target protein. In this work, special attention is devoted to the selection of the required composition and structure of the label molecule and the practical implementation of the laboratory technology for the synthesis of a set of initial QDs CdTe quantum dots samples with specified optical parameters.

Keywords:
selective labeling of target proteins, fluorescent labels, quantum dots, production methods, nitrilotriacetic acid
Text
Text (PDF): Read Download
References

1. Demina O.V., Belikov N.E., Mel'nikova I.A., Lukin A.Yu., Varfolomeev S.D., Hodonov A.A. Novye metki i zondy dlya resheniya zadach bionanofotoniki. Himicheskaya fizika, 2019, t. 38, № 12, s. 44-47. DOI:https://doi.org/10.1134/S1990793119060162. @@Demina O.V., Belikov N.E., Melnikova I.A., Lukin A.Yu., Varfolomeev S.D., Khodonov A.A. New Labels and Probes for the Application in Bionanophotonics.Russ. J. Physical Chemistry B, 2019, vol. 13, no. 6, pp. 938-941. (In Russ.) DOI: https://doi.org/10.1134/S0207401X19120057; EDN: https://elibrary.ru/MQJJNE

2. Zvezdin K.V., Belikov N.E., Laptev A.V., Lukin A.Yu., Demina O.V., Levin P.P., Brichkin S.B., Spirin M.G., Razumov V.F., Shvec V.I., Hodonov A.A. Novye gibridnye fotohromnye materialy c pereklyuchaemoy fluorescenciey. Rossiyskie nanotehnologii, 2012, t. 7, № 5-6, s. 112-118. DOI:https://doi.org/10.1134/S1995078012030172. @@Zvezdin K.V., Belikov N.E., Laptev A.V., Lukin A.Yu., Demina O.V., Levin P.P., Brichkin S.B., Spirin M.G., Razumov V.F., Shvets V.I., Khodonov A.A. New Hybrid Photochromic Materials with Switchable Fluorescence. Nanotechnologies in Russia, 2012, vol. 7, no. 5-6, pp. 308-317. (In Russ.) DOI:https://doi.org/10.1134/S1995078012030172. EDN: https://elibrary.ru/OXXCYN

3. Chambers J.J., Kramer R.H. Photosensitive Molecules for Controlling Biological Function. Neuromethods, Springer, 2011, vol. 55. DOIhttps://doi.org/10.1007/978-1-61779-031-71.

4. Papazoglou E.S., Parthasarathy A. Bionanotechnology. Morgan&Claypool, 2007. DOI:https://doi.org/10.2200/S00051ED1V01Y200610BME007.

5. Wingren C., Borrebaeck C.A. High-throughput proteomics using antibody microarrays. Expert Rev. Proteomics, 2004, vol. 1, no. 3, pp. 355-364. DOI:https://doi.org/10.1586/14789450.1.3.355. EDN: https://elibrary.ru/MFQKFV

6. Porath J., Carlsson J., Olsson I., Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975, vol. 258, no. 5536, pp. 598-599. DOI:https://doi.org/10.1038/258598a0.

7. Porath J. Immobilized metal ion affinity chromatography. Protein Expression Purif., 1992, vol. 3, no. 4, pp. 263-281. DOI:https://doi.org/10.1016/1046-5928(92)90001-D.

8. Hochuli E., Bannwarth W., Döbeli H., Gentz R., Stüber D. Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. Nature Bioteshnol., 1988, vol. 6, no. 11, pp. 1321-1325. DOI:https://doi.org/10.1038/nbt1188-1321.

9. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neurosci., 2015, vol. 18, pp. 1213-1225. DOI:https://doi.org/10.1038/nn.4091.

10. Boyden E.S. Optogenetics and the future of neuroscience. Nature Neurosci., 2015, vol. 18, pp. 1200-1201. DOI:https://doi.org/10.1038/nn.4094.

11. Govorunova E.G., Koppel' L.A. Put' k optogenetiki: rodopsinovye belki mikroorganizmov. Biohimiya, 2016, t. 81, № 9, c. 1172-1186. DOI:https://doi.org/10.1134/S0006297916090029. @@Govorunova E.G., Koppel L.A. The road to optogenetics. Microbial Rhodopsins. Biokhimiya, 2016, vol. 81, no. 9, pp. 1172-1186. (In Russ.) EDN: https://elibrary.ru/WWJWSB

12. Petrovskaya L.E., Lukashev E.P., Chupin V.V., Sychev S.V., Lyukmanova E.N., Kryukova E.A., Ziganshin R.H., Spirina E.V., Rivkina E.M., Khatypov R.A. Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Letters, 2010, vol. 584, no. 19, pp. 4193-4196. DOI:https://doi.org/10.1016/j.febslet.2010.09.005. EDN: https://elibrary.ru/MXIPBP

13. Balashov S.P., Petrovskaya L.E., Lukashev E.P., Imasheva E.S., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. Aspartate-Histidine Interaction in the Retinal Schiff Base Counterion of the Light-Driven Proton Pump of Exiguobacterium sibiricum. Biochemistry, 2012, vol. 51, no. 29, pp. 5748-5762. DOI:https://doi.org/10.1021/bi300409m. EDN: https://elibrary.ru/RGDKGR

14. Gushchin I., Chervakov P., Kuzmichev P., Popov A.N., Round E., Borshchevskiy V., Ishchenko A., Petrovskaya L., Chupin V., Dolgikh D.A., Arseniev A.S., Kirpichnikov M., Gordeliy V. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci., USA, 2013, vol. 110, no. 31, pp. 12631-12636. DOI:https://doi.org/10.1073/pnas.1221629110. EDN: https://elibrary.ru/RFMZDH

15. Balashov S.P., Petrovskaya L.E., Imasheva E.S., Lukashev E.P., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. Breaking the Carboxyl Rule - Lysine 96 facilitates protonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J. Biol. Chem., 2013, vol. 288, no. 29, pp. 21254- 21265. DOI:https://doi.org/10.1074/jbc.M113.465138. EDN: https://elibrary.ru/RFIFSV

16. Dioumaev A.K., Petrovskaya L.E., Wang J.M., Balashov S.P., Dolgikh D.A., Kirpichnikov M.P., Lanyi J.K. Photocycle of Exiguobacterium sibiricum Rhodopsin Characterized by Low-Temperature Trapping in the IR and Time-Resolved Studies. J. Phys. Chem. B, 2013, vol. 117, no. 24, pp. 7235-7253. DOI:https://doi.org/10.1021/jp402430w. EDN: https://elibrary.ru/PMPEGK

17. Belikov N.E., Demina O.V., Petrovskaya L.E., Kryukova E.A., Dolgikh D.A., Kuzmichev P.K., Chupin V.V., Lukin A.Yu., Shumsky A.N., Chizhov I., Levin P.P., Kirpichnikov M.P., Varfolomeev S.D., Khodonov A.A. The influence of the chromophoric group modification on the optical properties of retinal proteins. Mendeleev Communications, 2018, vol. 28, no. 4, pp. 406-408. DOI:https://doi.org/10.1016/j.mencom.2018.07.022. EDN: https://elibrary.ru/VBDZHM

18. Smitienko O.A., Feldman T.B., Petrovskaya L.E., Nekrasova O.V., Yakovleva M.A., Shelaev I.V., Gostev F.E., Cherepanov D.A., Kolchugina I.B., Dolgikh D.A., Nadtochenko V.A., Kirpichnikov M.P., Ostrovsky M.A.Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J. Phys. Chem. B, 2021, vol. 125, no. 4, pp. 995-1008. DOI:https://doi.org/10.1021/acs.jpcb.0c07763. EDN: https://elibrary.ru/YWOOQQ

19. Shaner N.C., Campbell R.E., Steibach P.A., Gierpmans B.N.G., Palmer A.E., Tsien R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol., 2004, vol. 22, pp. 1567-1572. DOI:https://doi.org/10.1038/nbt1037. EDN: https://elibrary.ru/MHMPXZ

20. Razumov V.F. Fotonika kolloidnyh kvantovyh tochek. Pod red. Klyueva M.B. Ivanovo: Ivanovskiy gos. un-t, 2017, 272 s. @@Razumov V.F. Photonics of colloid quantum dots. Klyuev M.B. Ed. Ivanovo Ivanovo State University, 2017, 272 p. (In Russ.) EDN: https://elibrary.ru/WQTYRR

21. Oleynikov V.A., Suhanova A.V., Nabiev I.R. Fluorescentnye poluprovodnikovye nanokristally v biologii i medicine. Rossiyskie nanotehnologii, 2007, t. 2, № 1-2, c. 160-173. @@Oleynikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Nanotechnologies in Russia, 2007, vol. 2, no. 1-2, pp. 160-173. (In Russ.) EDN: https://elibrary.ru/HVZRBX

22. Nikolenko D.Yu., Brichkin S.B., Razumov V.F. Neizotermicheskiy vysokotemperaturnyy kolloidnyy sintez nanochastic CdSe. Rossiyskie nanotehnologii, 2009, t. 4, no. 11-12, s. 92-95. DOI:https://doi.org/10.1134/S1995078009110044. @@Nikolenko D.Yu., Brichkin S.B., Razumov V.F. Nonisothermal High-Temperature Colloidal Synthesis of Cd Se Nanocrystals. Nanotechnologies in Russia, 2009, vol. 4, no. 5-6, pp. 790-794. (In Russ.) DOI:https://doi.org/10.1134/S1995078009110044. EDN: https://elibrary.ru/KYNVDN

23. Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993, vol. 115, no. 19, pp. 8706-8715. DOI:https://doi.org/10.1021/ja00072a025. EDN: https://elibrary.ru/XQVHKV

24. Peng Z.A., Peng X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc., 2001, vol. 123, no. 1, pp. 183-184. DOI:https://doi.org/10.1021/ja003633m.

25. Talapin D.V., Rogach A.L., Kornowski A., Haase M., Weller H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphosphine Mixture. NanoLett., 2001, vol. 1, no. 4, pp. 207-211. DOI:https://doi.org/10.1021/nl0155126. EDN: https://elibrary.ru/XITLZN

26. Gaponik N., Talapin D.V., Rogach A.L., Hoppe K., Shevchenko E.V., Kornowski A., Eychmuller A., Weller H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B, 2002, vol. 106, no. 29, pp. 7177-7185. DOI:https://doi.org/10.1021/jp025541k. EDN: https://elibrary.ru/TLCLGU

27. Mandal A., Tamai N. Luminescence enhancement of water soluble CdTe quantum dots by proper surface modification with ethylene diamine. Chem. Phys. Let., 2011, vol. 507, pp. 248-252. DOI:https://doi.org/10.1016/j.cplett.2011.03.086. EDN: https://elibrary.ru/YDHIJN

28. Park J.C., Choi S.Y., Yang M.Y., Nan L., Na H., Lee H.N., Chung H.J., Hong C.A., Nam Y.S. Subnanomolar FRET-Based DNA Assay Using Thermally Stable Phosphorothioated DNA-Functionalized Quantum Dots. ACS Appl. Mater.Interface, 2019, vol. 11, no. 37, pp. 33525-33534. DOI:https://doi.org/10.1021/acsami.9b07717.

29. Xua N., Piaoa M., Arkina K., Rena L., Zhanga J., Haoa J., Zhenga Y., Shanga Q. Imaging of water soluble CdTe/CdS core-shell quantum dots in inhibiting multidrug resistance of cancer cells. Talanta, 2019, vol. 201, pp. 309-316. DOI:https://doi.org/10.1016/j.talanta.2019.04.021. EDN: https://elibrary.ru/VYTGHE

30. Li L., Qian H., Ren J. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem.Comm., 2005, vol. 36, no. 4, pp. 528-530. DOI:https://doi.org/10.1039/b412686f. EDN: https://elibrary.ru/XPVMHV

31. He Y., Sai L.-M., Lu H.-T., Hu M., Lai W.-Y., Fan Q.-L., Wang L.-H., Huang W. Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution. Chem. Mater., 2007, vol. 19, no. 3, pp. 359-365. DOI:https://doi.org/10.1021/cm061863f. EDN: https://elibrary.ru/XZXPET

32. Duan J., Song L., Zhan J. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg2+-Sensitive Properties. NanoRes., 2009, vol. 2, no. 1, pp. 61-68. DOI:https://doi.org/10.1007/s12274-009-9004-0. EDN: https://elibrary.ru/YAXDEF

33. Bao H., Wang E., Dong S. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites. Small, 2006, vol. 2, no. 4, pp. 476-480. DOI:https://doi.org/10.1002/smll.200500346. EDN: https://elibrary.ru/VGRAFA

34. Kinia S., Kulkarnia S.D., Ganigaa V., Nagarakshit T.K., Chidangila S. Dual functionalized, stable and water dispersible CdTe quantum dots: Facile, one-pot aqueous synthesis, optical tuning and energy transfer applications. Mater. Res. Bulletin, 2019, vol. 110, pp. 57-66. DOI:https://doi.org/10.1016/j.materresbull.2018.10.013.

35. Yu W.W., Qu L., Guo W., Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater., 2003, vol. 15, no. 14, pp. 2854-2860. DOI:https://doi.org/10.1021/cm034081k.


Login or Create
* Forgot password?