When conducting hygienic research, an urgent task is to search for simple multicellular animals with social behavior to solve the fundamental issues of the interaction of cells with destabilizing environmental factors. Such factors include the light environment, which controls the biological clock of living organisms through the spectral composition of the light spectrum. Light through the system of ganglion cells of the eyes and the pineal gland with its "serotonin-melatonin" system controls the" circadian rhythms" of a person. The pineal gland in its structure has a spatial distribution of CaCO3 microcrystals, serotonin and melatonin synthesis cells from tryptophan, as well as a neuropeptide network. The search for a modal animal for the study and modeling of processes in the human pineal gland is an urgent hygienic task. Such a model animal can become a marine animal Trichoplax (Placozoa) has the simplest organization among all known animals with only six distinguishable cell types, but with outstanding social behavior. The theoretical analysis of the spectral composition of light and the degree of its polarization in the marine environment of the simplest multicellular animal Trichoplax (Placozoa), as well as the features of its gene-cell structure, is carried out. Based on the laws of hydrooptics and the survival strategy ("food-prey"), the coordinate axes of the light medium for Trichoplax are determined (the light vertical (395 nm) and two horizontal light axes - the reflected horizontal light from the food (green - 532 nm) and the fluorescent light coming from the aragonite shell of the predator mollusk (red - 630 nm). Based on the animal's reactions to these RGB light stimuli, a hypothesis is made about the presence of an RGB taxis in Trichoplax. The monochrome light signals red - 630 nm, green - 532 nm and blue - 395 nm are selected for Trichoplax control. Experimentally, within the framework of the work "Trichoplax for Bionics", the discovery of an RGB taxi in Trichoplax was confirmed. Trichoplax Movement control RGB -taxsis - YouTube
light stimuli, Trichoplax, crystal cells, aragonite, pineal gland, calcite crystals, phototaxis, tryptophan, serotonin, neuropeptide network, circadian rhythms
1. Schierwater B., DeSalle R. Placozoa. Current Biology, 2018, vol. 28, no. 3, pp. 97-98.
2. Brylev B.A., Kryuchkov B.N., Zalepuhin V.V. Teoreticheskie aspekty bioraznoobraziya: Uchebnoe posobie. Volgograd: Izd-vo VolGU, 2003. @@Brylev V.A., Kryuchkov V.N., Zalepukhin V.V. Theoretical aspects of biodiversity: Tutorial. Volgograd: VolGU Publishing House, 2003. (In Russ.)
3. Srivastava M. et al. The Trichoplax genome and the nature of placozoans. Nature, 2008, vol. 454, pp. 955-960.
4. Smith C. et al. Novel Cell Types, Neurosecretory Cells and Body Plan of the Early-Diverging Metazoan, Trichoplax adhaerens 2014. Curr Biol., 2014, vol. 24, no. 14, pp. 1565-1572. doi:https://doi.org/10.1016/j.cub.2014.05.046
5. Smith C.L., Pivovarova N., Reese T.S. Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses. PLoS ONE, 2015, vol. 10, no. 9, e0136098. DOI:https://doi.org/10.1371/journal.pone.0136098
6. Moroz L.L. NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chemical Neuroscience, 2018, vol. 9, pp. 1884-1903. doihttps://doi.org/10.1021/acschemneuro.8b00100
7. Nikitin M. Neyrotransmittery i ih funkcii u trihoplaksa - zhivotnogo bez nervnoy sistemy. https://www.youtube.com/watch?v=OwnA4oFro0w. @@Nikitin M. Neurotransmitters and their functions in Trichoplax - an animal without nervous systems. (In Russ.)
8. Romanova D.Y., Smirnov I.V. et al. Sodium action potentials in placozoa: Insights into behavioral integration and evolution of nerveless animals. Biochemical and Biophysical Research Communications, 2020. doi:https://doi.org/10.1016/j.bbrc.2020.08.020
9. Armona Sh., Storm Bullb M., Aranda-Diaza A., Manu Prakasha. C Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. PNAS, 2018, vol. 115, no. 44.
10. Ilton M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science, 2018, vol. 360, eaao1082.
11. Mayorova T.D. et al. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One 13, 2018, e0190905. doi:https://doi.org/10.1371/journal.pone.0190905
12. Mayorova T.D. et al. A Gravity-Sensing Cell in Trichoplax adhaerens, an Early Branching Metazoan.337.04. Conference: Society for Neuroscience 2016, in San Diego.
13. Moroz L.L., Romanova D.Y., Nikitin M.A., Dosung Sohn, Kohn Andrea B. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission Emilie Neveu, and Dirk Fasshauer Frederique Varoqueaux Scientific reports, Nature Publishing Group (United Kingdom), 2020. doi: 10:13020-10
14. Nikitin M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. General and Comparative Endocrinology, Academic Press (United States), 2014. doi:https://doi.org/10.1016/j.ygcen.2014.03.049
15. Romanova D.Yu. Raznoobrazie kletochnyh tipov u gaplotipa H4 PLACOZOA SP. Morskoy biologicheskiy zhurnal, 2019, t. 4, № 1, pp. 81-90. @@Romanova D.Yu. Diversity of cell types in the H4 PLACOZOA SP. Nautical biological journal, 2019, vol. 4, no. 1, pp. 81-90. (In Russ.)
16. Seravin L.N., Gudkov A.V. Trichoplax adhaerens (tip Placozoa) - odno iz samyh primitivnyh mnogokletochnyh zhivotnyh. Sankt-Peterburg: TESSA, 2005, t. 69. @@Seravin L.N., Gudkov A.V. Trichoplax adhaerens (type Placozoa) is one of the most primitive multicellular animals. St. Petersburg: TESSA, 2005, vol. 69. (In Russ.)
17. Znakom'tes': Trihoplaks, prosteyshee zhivotnoe na Zemle https://scientificrussia.ru/articles/znakomtes-trihoplaks-prostejshee-zhivotnoe-na-zemle. [Meet Trichoplax, the simplest animal on Earth (In Russ.)]
18. Heyland A., Croll R., Goodall S., Kranyak J., Wyeth R. Trichoplax adhaerens, an Enigmatic Basal Metazoan with Potential Trichoplax adhaerens, February. Methods in molecular biology (Clifton, N.J.), 2014, vol. 1128, pp. 45-61.
19. Zhuravlev Yu.N., Karpenko A.A., Guzev M.A. K mnogoobraziyu funkciy guaninsoderzhaschih struktur v zhivyh sistemah. Vestnik DVO RAN, 2021, № 2. [Zhuravlev Yu.N., Karpenko A.A., Guzev M.A. To the variety of functions of guanine-containing structures in living systems. Bulletin FEB RAS, 2021, no. 2. (In Russ.)] doi: 10.371102/0869-7698_2021_02_01
20. Mansi Srivastava. The Trichoplax genome and the nature of placozoans. Nature, 2008, vol. 454, pp. 955-960.
21. «Nevidimaya» ryba mozhet osvetit' put' k luchshim opticheskim ustroystvam https://ru.livingorganicnews.com/invisible-fish-could-light-way-better-optical-devices 775007. @@Invisible Fish May Light the Way to Better Optics (In Russ.)
22. Characterization of Light Reflection of Fish Guanine Crystals by Diamagnetic Micromanipulation.
23. Michiels N.K., Anthes N., Hart N.S., Herler J., Meixner A.J., Schleifenbaum F., Schulte1 G., Siebeck U.E., Sprenger D., Wucherer M.F. Red fluorescence in reef fish: A novel signalling mechanism? BMC Ecology, 2008, vol. 8, no. 16. doi:https://doi.org/10.1186/1472-6785-8-16
24. Johnsen S. The Optics of Life: A Biologist’s Guide to Light in Nature "Optika zhizni: rukovodstvo biologa po svetu v prirode" https://babylonzoo.blog/optics/index.html
25. Ochakovskiy Yu.E., Kopelevich O.V., Voytov V.I. Svet v more https://coollib.com/b/279274/read @@Ochakovsky Yu.E., Kopelevich O.V., Voitov V.I. Light in the sea (In Russ.)
26. Eitel M., Osigus H.J., DeSalle R., Schierwater B. Global diversity of the Placozoa. PLoS One, 2013, vol. 8, no. 4, e57131. DOI:https://doi.org/10.1371/journal.pone.0057131. PMID 23565136.
27. Wenjie Zhu, a Jiaping Lin, a Chunhua Caia, Yingqing Lua. Biomimetic mineralization of calcium carbonate mediated by a polypeptide-based copolymer.
28. Nicolette Nadene Houreld Shedding Light on a New Treatment for Diabetic Wound Healing: A Review on Phototherapy ScientificWorldJournal. 2014 doi:https://doi.org/10.1155/2014/398412.
29. Chachina N.A., Kirtok A.N., Frolova M.C., Vekshin N.L. Mitohondrii - silovye elektrostancii neyronnyh setey. Neyroinformatika: Sbornik statey. Ch. 1, M., 2013, c. 219-229. @@Chachina N.A., Kirtok A.N., Frolova M.C., Vekshin N.L. Mitochondria - power plants of neural networks. Neuroinformatics Collection of articles. Part 1, M., 2013, pp. 219-229. (In Russ.)
30. Romanova D.Yu. Sravnitel'nyy analiz organizacii tipov kletok i povedeniya u PLACOZOA. Avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata biologicheskih nauk. 2020, 26 c. @@Romanova D.Yu.Comparative analysis of the organization of cell types and behavior in PLACOZOA. Abstract of dissertation for the degree of candidate biological sciences. 2020, 26 p. (In Russ.)
31. Novikov V.E., Levchenkova O.S., Pozhilova E.V. Reviews on Clinical Pharmacology and Drug Therapy. Smolensk State Medical University, Smolensk, Russia, 2016, vol. 14, no. 2, pp. 38-46.
32. Pereza Y.R., Etchenique R. Optical manipulation of animal behavior using a ruthenium-based phototrigger. Photochemical & Photobiological Sciences Issue, 2019, vol. 1.
33. Yurre T.A., Rudaya L.I., Klimova N.V., Shamanin V.V. Organicheskie materialy dlya fotovol'taicheskih i svetoizluchayuschih ustroystv. Fizika i tehnika poluprovodnikov, 2003, t. 37, № 7. @@Yurre T.A., Rudaya L.I., Klimova N.V., Shamanin V.V. Organic materials for photovoltaic and light-emitting devices. Physics and technology of semiconductors, 2003, vol. 37, no. 7. (In Russ.)
34. Crystallization Pathways in Biomineralization. Annual Review of Materials Research, 2011, vol. 41, pp. 21-40. doi:https://doi.org/10.1146/annurev matsci-062910-095803
35. Mizukawa Y. Characterization of Light Reflection of Fish Guanine Crystals. Diamagnetic Micromanipulation Doctoral Theses, 2016, vol. 111.
36. Chikashige T., Iwasaka M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Advances 8, 2018, 056704. doi:https://doi.org/10.1063/1.5006135
37. Gur D., Palmer B.A., Weiner S., Addadi L. Light Manipulation by Guanine Crystals in Organisms: Biogenic Scatterers, Mirrors, Multilayer Reflectors and Photonic Crystals Advanced functional materials, 2017, vol. 27, iss. 6, 20171603514.
38. Speiser D.I., Eernisse D.J., Johnsen S. A chiton uses aragonite lenses to form images. Curr Biol., 2011, vol. 21, pp. 665-670. doi:https://doi.org/10.1016/j.cub.2011.03.033 PMID: 21497091.
39. Speiser D.I., DeMartini D.G., Oakley T.H. The shell-eyes of the chiton Acanthopleura granulate (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J Nat Hist., 2014, vol. 48, pp. 2899-2911. doi:https://doi.org/10.1080/00222933.2014.959572
40. Aizenberg J., Tkachenko A., Weiner S., Addadi L., Hendler G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature, 2001, vol. 412, pp. 819-822. doi:https://doi.org/10.1038/35090573 PMID: 11518966
41. Ga´l J., Horva´th G., Clarkson E.N.K., Haiman O. Image formation by bifocal lenses in a trilobite eye? Vision Res., 2000, vol. 40, pp. 843-853. doi:https://doi.org/10.1016/S0042-6989(99)00216-3 PMID:10683460
42. Kozlov D.V. Fizicheskaya himiya, lekcii https://studfile.net/preview/4482440/ @@Kozlov D.V. Physical chemistry, lectures (In Russ.)
43. Razgadat' tayny Chernogo morya: kakie raboty vedutsya v laboratoriyah InBYuMa https://www.youtube.com/watch?v=MEbz9t4eVVA&feature=emb_logo. @@Unravel the secrets of the Black Sea: what work is being done in the laboratories of in IBSS (In Russ.)