Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Using the time-dependent density functional theory at the X3LYP/6-31++G(d,p)/SMD level, the vibronic absorption spectrum of the thiazine dye thionine (TH) in an aqueous solution was calculated. This study is a logical continuation of the previously published work [L.O. Kostjukova et al. Optik 242 (2021) 167156], in which the water environment of TH was set implicitly in the continuum approximation using the SMD model. In the present work, we used a combined setting of the aqueous environment: five water molecules were explicitly described, forming strong hydrogen bonds with a dye molecule; the rest of the aqueous medium was set implicitly, also by the SMD method. This approach was used to elucidate the effect of site-specific interactions with a solvent on both the ground and excited states of the dye molecule and on the transition between them (solvatochromism). The reverse effect of excitation of the TH molecule on its nearest hydration shell was also of interest. Calculations have shown that there is an increase in these H-bonds upon photoexcitation of the dye. In this case, the maximum of the vibronic absorption spectrum of TH undergoes a bathochromic shift by 14 nm. These results were analyzed from the point of view of the solvatochromic theory. Frontier molecular orbitals, between which an electronic transition occurs, and maps of the distribution of electron density and electrostatic potential of the ground and excited states of the "TH+5H2O" system have been built. The photoinduced polarization of the dye molecule was analyzed.
thionine, aqueous solution, excited state, vibronic absorption spectrum, solvatochromism, hydrogen bond, time-dependent density functional theory
1. Kramer H., Windrum G.M. The metachromatic staining reaction. J. Histochem. Cytochem., 1955, vol. 3, pp. 227-237.
2. Shiyanovskaya I., Hepel M. Decrease of Recombination Losses in Bicomponent WO3/TiO2 Films Photosensitized with Cresyl Violet and Thionine. J. Electrochem. Soc., 1988, vol. 145, pp. 3981-3985.
3. Jockusch S., Lee D., Turro N.J., Leonard E.F. Photo-induced inactivation of viruses: Adsorption of methylene blue, thionine, and thiopyronine on Qβ bacteriophage. Proc. Natl. Acad. Sci., USA, 1996, vol. 93, pp. 7446-7451.
4. Neumann M.G., Rodrigues M.R. The mechanism of the photoinitiation of the polymerization of MMA by the thionine-triethanolamine system. Polymer, 1998, vol. 39, pp. 1657-1661. ; DOI: https://doi.org/10.1016/S0032-3861(97)00460-6; EDN: https://elibrary.ru/XRNNNA
5. Groenen E.J.J., de Groot M.S., de Ruiter R., de Wit N. Triton X-100 Micelles in the Ferrous/Thionine Photogalvanic Cell. J. Phys. Chem., 1984, vol. 88, pp. 1449-1454.
6. Zhu L., Luo L., Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosensors Bioelectronics, 2012, vol. 35, pp. 507-511. ; DOI: https://doi.org/10.1016/j.bios.2012.03.026; EDN: https://elibrary.ru/PLWPLP
7. Hu B., Quhe R., Chen C., Zhuge F., Zhu X., Peng S., Chen X., Pan L., Wu Y., Zheng W., Yan Q., Lu J., Li R.-W., Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J. Mater. Chem., 2012, vol. 22, pp. 16422-16430. ; DOI: https://doi.org/10.1039/c2jm32121a; EDN: https://elibrary.ru/RNRWEV
8. Afkhami A., Shirzadmehr A., Madrakian T., Bagheri H. New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta, 2015, vol. 131, pp. 548-555.
9. Guo L., Zhang Q., Huang Y., Han Q., Wang Y., Fu Y., The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers. Bioelectrochemistry, 2013, vol. 94, pp. 87-93. ; DOI: https://doi.org/10.1016/j.bioelechem.2013.09.002; EDN: https://elibrary.ru/RNTBXB
10. Shobha Jeykumari D.R., Ramaprabhu S., Sriman Narayanan S. A thionine functionalized multiwalled carbon nanotube modi ed electrode for the determination of hydrogen peroxide. Carbon, 2007, vol. 45, pp. 1340-1353. ; DOI: https://doi.org/10.1016/j.carbon.2007.01.006; EDN: https://elibrary.ru/MHFOID
11. Chen C., Zhai W., Lu D., Zhang H., Zheng W. A facile method to prepare stable noncovalent functionalized graphene solution with thionine. Materials Res. Bull., 2011, vol. 46, pp. 583-587.
12. Krzyszkowska E., Walkowiak-Kulikowska J., Stienen S., Wojcik A. Thionine-graphene oxide covalent hybrid and its interaction with light. Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 14412-14423.
13. Wang Z., Li M., Zhang Y., Yuan J., Shen Y., Niu L., Ivaska A. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon, 2007, vol. 45, pp. 2111-2115. ; DOI: https://doi.org/10.1016/j.carbon.2007.05.018; EDN: https://elibrary.ru/YAHQWF
14. Ruan C., Wang W., Gu B. Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. J. Raman Spectrosc., 2007, vol. 38, pp. 568-573.
15. Ding Y., Chen Z., Xie J., Guo R.Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes. J. Colloid Interface Sci., 2008, vol. 327, pp. 243-250.
16. Jesna K.K., Ilanchelian M. Photophysical changes of thionine dye with folic acid capped gold nanoparticles by spectroscopic approach and its in vitro cytotoxicity towards A-549 lung cancer cells. J. Mol. Liquids, 2017, vol. 242, pp. 1042-1051.
17. Neumann M.G., Schmitt C.C., Gessner F. Time-Dependent Spectrophotometric Study of the Interaction of Basic Dyes with Clays II: Thionine on Natural and Synthetic Montmorillonites and Hectorites. J. Colloid Interface Sci., 1996, vol. 177, pp. 495-501.
18. Czimerova A., Ceklovsky A., Bujdak J.Interaction of montmorillonite with phenothiazine dyes and pyronin in aqueous disper sions: A visible spectroscopy study. Cent. Eur. J. Chem., 2009, vol. 7, pp. 343-353.
19. Gigli L., Arletti R., Vitillo J.G., Alberto G., Martra G., Devaux A., Vezzalini G. Thionine Dye Con ned in Zeolite L: Synthesis Location and Optical Properties. J. Phys. Chem. C, 2015, vol. 119, pp. 16156-16165.
20. de Souza R.M., Siani P., Schmidt T.F., Itri R., Dias L.G. Methylene Blue Loca tion in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation. J. Phys. Chem. B., 2017, vol. 121, pp. 8512-8522. ; DOI: https://doi.org/10.1021/acs.jpcb.7b04824; EDN: https://elibrary.ru/YHEPAX
21. SenVarma A., Bhowmik B.B. Photoinduced interaction of thionine with phospholipid and cholesterol in artificial membranes. J. Photochem. Photobiol. B, 1991, vol. 8, pp. 295-305.
22. Viswanathan K., Natarajan P. Photophysical properties of thionine and phenosafranine dyes covalently bound to macromolecules. J. Photochem. Photobiol. A, 1996, vol. 95, pp. 245-253.
23. Balasubramaniam E., Natarajan P. Photophysical properties of protopo rphyrin IX and thionine covalently attached to macromolecules. J. Photochem. Photobiol. A, 1997, vol. 103, pp. 201-211.
24. Paul P., Hossain M., Yadav R.C., Kumar G.S. Biophysical studies on the base speci city and energetics of the DNA interaction of photoactive dye thionine: Spectroscopic and calorimetric approach. Biophys. Chem., 2010, vol. 148, pp. 93-103.
25. Paul P., Kumar G.S. Toxic interaction of thionine to deoxyribonucleic acids: Elucidation of the sequence speci city of binding with polynucleotides. J. Hazard. Mat., 2010, vol. 184, pp. 620-626.
26. Paul P., Kumar G.S., Thionine Interaction to DNA: Comparative Spectroscopic Studies on Double Stranded Versus Single Stranded DNA. J. Fluoresc., 2012, vol. 22, pp. 71-80. ; DOI: https://doi.org/10.1007/s10895-011-0931-2; EDN: https://elibrary.ru/XDKOJX
27. Paul P., Kumar G.S. Targeting ribonucleic acids by toxic small molecules: Structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNAphe. J. Hazard. Mat., 2013, vol. 263, pp. 735-745.
28. Shanmugaraj K., Anandakumar S., Ilanchelian M. Exploring the biophysical aspects and binding mechanism of thionine with bovine hemoglobin by optical spectroscopic and molecular docking methods. J. Photochem. Photobiol. B, 2014, vol. 131, pp. 43-52.
29. Manivel P., Anandakumar S., Ilanchelian M. Exploring the interaction of the photodynamic therapeutic agent thionine with bovine serum albumin: multispectroscopic and molecular docking studies. Luminescence, 2015, vol. 30, pp. 729-739.
30. Gokturk S., Talman R.Y. Effect of Temperature on the Binding and Distribution Characteristics of Thionine in Sodium Dodecylsulfate Micelles. J. Solution Chem., 2008, vol. 37, pp. 1709-1723.
31. Porcal G.V., Arbeloa E.M., Bertolotti S.G., Previtali C.M. Photophysics of Thionine in AOT and BHDC reverse micelles. Quenching of the triplet state by aliphatic amines studied by transient absorption spectroscopy. J. Photochem. Photobiol. A., 2017, vol. 346, pp. 187-193.
32. Gokturk S., Keskin G., Talman R.Y.C., Cakir N. Spectroscopic and conductometric studies on the interactions of thionine with anionic and nonionic surfactants. Color. Technol., 2017, vol. 0, pp. 1-7.
33. Ovchinnikov O.V., Smirnov M.S., Kondratenko T.S., Ambrosevich S.A., Metlin M.T., Grevtseva I.G., Perepelitsa A.S. Forster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules. J. Nanopart. Res., 2017, vol. 19, p. 403.
34. Smirnov M.S., Ovchinnikov O.V., Grevtseva I.G., Tesfamicael E.T., Tikhomirov S.A., Buganov O.V., Kondratenko T.S. Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules. J. Nanopart. Res., 2019, vol. 21, p. 67.
35. Smirnov M.S, Ovchinnikov O.V., Perepelitsa A.S. Resonant Nonradiative Energy Transfer in Hybrid Associates of Thionine Molecules and Ag2S Colloidal Quantum Dots with Different Luminescence Mechanisms. Optics Spectrosc., 2019, vol. 126, pp. 62-69. ; DOI: https://doi.org/10.1134/S0030400X19010168; EDN: https://elibrary.ru/AKIVRQ
36. Sanyo H.Interactions of β- and γ-Cyclodextrins with Thionine and 2-Naphthalenesulfonate in Aqueous Solution. Bull. Chem. Soc. Jpn., 2000, vol. 73, pp. 861-866.
37. Hecht C., Hermann P., Friedrich J., Chang C.-C., Chang T.-C. Thionin in a cyclodextrin nanocavity: Measuring local compressibilities by pressure tuning hole burning spectroscopy. Chem. Phys. Lett., 2005, vol. 413, pp. 335-341. ; DOI: https://doi.org/10.1016/j.cplett.2005.08.002; EDN: https://elibrary.ru/LXGMQL
38. Dixit N.S., Mackay R.A. Microemulsions as Photogalvanic Cell Fluids. The Surfactant Thlonine-Iron(II) System. J. Phys. Chem., 1982, vol. 86, pp. 4593-4598.
39. Suds Y., Shimoura Y., Sakata T., Tsubornura H. Photogalvanic Effect in the Thionine-Iron System at Semiconductor Electrodes. J. Phys. Chem., 1978, vol. 82, pp. 268-271.
40. Ferreira M.I.C., Harriman A. Photoredox Reactions of Thionine. Chem. Soc., Faraday Trans., 1977, vol. 1, no. 73, pp.1085-1092.
41. Xu W., Aydin M., Zakia S., Akins D.L. Aggregation of Thionine within AlMCM-48. J. Phys. Chem. B, 2004, vol. 108, pp. 5588-5593.
42. Murthy A.S.N., Bhardwa A.P., Charge-transfer Interactions of Thionine and Toluidine Blue with Amines. J. Chem. Soc., Faraday Trans., 1982, vol. 2, no. 78, pp. 1811-1814.
43. Rabinowitch E., Epstein L.F. Polymerization of dyestuffs in solution. thionine and methylene blue. J. Am. Chem. Soc., 1941, vol. 63, pp. 69-78.
44. Epstein L.F., Karush F., Rabinowitch E. A Spectrophotometric Study of Thionine. J. Opt. Soc. Am., 1941, vol. 31, pp. 77-84.
45. Sheppard S.E., Geddes A.L. Effect of solvents upon the absorption spectra of dyes. V. Water as solvent: Quantitative examination of the dimerization hypothesis. J. Am. Chem. Soc., 1944, vol. 66, pp. 2003-2009.
46. Haugen G., Hardwick R. Ionic Association in Solutions of Thionine. J. Phys. Chem., 1963, vol. 67, pp. 725-731.
47. Haugen G., Hardwick R. Ionic Association in Solutions of Thionine. II. Fluorescence and Solvent Effects. J. Phys. Chem., 1965, vol. 69, pp. 2988-2996.
48. Ballard R.E., Park C.H. Optical Absorption Bandshapes of Acridine Orange, Thionine, and Methylene Blue in Monomeric and Dimeric States. J. Chem. Soc. (A), 1970, pp. 1340-1343.
49. Dewey T.G, Wilson P.S., Turner D.H. Solvent Effects on Stacking. A Kinetic and Spectroscopic Study of Thionine Association in Aqueous Alcohol Solutions. J. Am. Chem. Soc., 1978, vol. 100, pp. 4550-4554.
50. Lai W.C., Dixit N.S., Mackay R.A. Formation of H Aggregates of Thionine Dye in Water. J. Phys. Chem., 1984, vol. 88, pp. 5364-5368.
51. Das S., Kamat P.V. Can H-Aggregates Serve as Light-Harvesting Antennae? Triplet-Triplet Energy Transfer between Excited Aggregates and Monomer Thionine in Aersol-OT Solutions. J. Phys. Chem. B, 1999, vol. 103, pp. 209-215.
52. Ghanadzadeh Gilani A., Ghorbanpour T., Salmanpour M. Additive effect on the dimer formation of thiazine dyes. J. Mol. Liquids, 2013, vol. 177, pp. 273-282. ; DOI: https://doi.org/10.1016/j.molliq.2012.09.005; EDN: https://elibrary.ru/YDIJHX
53. Chakraborty A., Ali M., Saha S.K. Molecular interaction of organic dyes in bulk and con ned media. Spectrochim. Acta A, 2010, vol. 75, pp. 1577-1583.
54. Liu Y., Yamamoto S., Fujiyama Y., Sueishi Y. Kinetic study on the reversible hydride transfer between methylene blue and thionine. Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 2367-2371.
55. Guha S.N., Moorthy P.N., Kishore K., Naik D.B., Rao K.N. One-electron reduction of thionine studied by pulse radiolysis. Proc. Ind. Acad. Sci. (Chem. Sci.), 1987, vol. 99, pp. 261-271. ; DOI: https://doi.org/10.1007/bf02881248; EDN: https://elibrary.ru/MFAPEY
56. Kamat P.V., Lichtin N.N. Electron transfer in the quenching of protonated triplet thionine and methylene blue by ground state thionine. J. Photochem., 1982, vol. 18, pp. 197-209.
57. Liu A., Kamat P.V. Dye-Capped Semiconductor Nanoclusters. One-Electron Reduction and Oxidation of Thionine and Cresyl Violet H-Aggregates Electrostatically Bound to SnO2 Colloids. Langmuir, 1996, vol. 12, pp. 2190-2195.
58. Wildes P.D., Lichtin N.N. Indirect Measurement of the Thionine-Leucothionine Synproportionation Rate Constant by a Photochemical Perturbation Technique. J. Phys. Chem., 1978, vol. 82, pp. 981-984.
59. Kamat P.V. Photoelectrochemistry in colloidal systems: interfacial electron transfer between colloidal TiO2 and thionine in acetonitrile. J. Photochem., 1985, vol. 28, pp. 513-524.
60. Usui Y. Photoreduction of methylene blue and thionine in ethanol. Bull. Chem. Soc. Jpn., 1965, vol. 38, pp. 206-215.
61. Somer G., Temize A. Photoreduction of thionine by water. Photochem. Photobiol., 1984, vol. 40, pp. 575-580.
62. Hatchard C.G., Parke C.A. The photoreduction of thionine by ferrous sulphate. Trans. Faraday Soc., 1961, vol. 57, pp. 1093-1106.
63. Weng K.C., Chiang C.-C, Cheng J.-Y., S.-Y. Cheng, R.I. Personov, T.-C. Chang, Investigation of tautomeric structures of thionin by satellite holes: matrix dependence. Chem. Phys. Lett., 1999, vol. 302, pp. 347-353. ; DOI: https://doi.org/10.1016/S0009-2614(99)00047-0; EDN: https://elibrary.ru/LFQOXP
64. Mills, Hazafy D., Parkinson J., Tuttle T., Hutchings M.G. Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes Pigments, 2011, vol. 88, pp. 149-155.
65. Katafias A., Fenska J. Sulfuric acid controlled oxidative degradation of azure B and thionine dyes by cerium(IV).Int. J. Chem. Kinetics, 2011, vol. 43, pp. 523-536.
66. Hempelmann U., Dorfmuller T. Thermal lens spectroscopy of the phenothiazine dye thionine in solution. J. Mol. Liquids, 1991, vol. 48, pp. 261-275. ; DOI: https://doi.org/10.1016/0167-7322(91)80015-V; EDN: https://elibrary.ru/XMQQKL
67. Parkanyi C., Boniface C. A quantitative study of the effect of solvent on the electronic absorptlon and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments. Spectrochim. Acta., 1993, vol. 49A, pp. 1715-1725.
68. Sommer U., Kramer H.E.A. A theoretical treatment of the electronic states of thionine and related molecules. Photochem. Photobiol., 1971, vol. 13, pp. 387-398.
69. Homem-de-Mello P., Mennucci B., Tomasi J., da Silva A.B.F. The effects of solvation in the theoretical spectra of cationic dyes. Theor. Chem. Acc., 2005, vol. 113, pp. 274-280.
70. Rodriguez-Serrano A., Daza M.C., Doerr M., Marian C.M. A quantum chemical investigation of the electronic structure of thionine. Photochem. Photobiol. Sci., 2012, vol. 11, pp. 397-408. ; DOI: https://doi.org/10.1039/c1pp05267e; EDN: https://elibrary.ru/JWEKEU
71. Rodriguez-Serrano A., Rai-Constapel V., Daza M.C., Doerr M., Marian C.M. A theoretical study of thionine: spin-orbit coupling and intersystem crossing. Photochem. Photobiol. Sci., 2012, vol. 11, pp. 1860-1867. ; DOI: https://doi.org/10.1039/c2pp25224d; EDN: https://elibrary.ru/ZSMXJD
72. Rodriguez-Serrano A., Rai-Constapel V., Daza M.C., Doerr M., Marian C.M.Internal heavy atom e ects in phenothiazinium dyes: enhancement of intersystem crossing via vibronic spin-orbit coupling. Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 11350-11358.
73. Kostjukova L.O., Leontieva S.V., Kostjukov V.V. TD-DFT/DFT study of thionine in aqueous solution: Vibronic absorption spectrum and electronic properties. Optik, 2021, vol. 242, p. 167156.
74. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, vol. 113, pp. 6378-6396. ; DOI: https://doi.org/10.1021/jp810292n; EDN: https://elibrary.ru/MMAUZF
75. Fleming S., Mills A., Tuttle T. Predicting the UV-vis spectra of oxazine dyes. Beilstein J. Org. Chem., 2011, vol. 7, pp. 432-441.
76. Xu X., Goddard W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc. Natl. Acad. Sci., USA, 2004, vol. 101, pp. 2673-2677.
77. Zhao G.J., Han K.L. Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening. ChemPhysChem, 2008, vol. 9, pp. 1842-1846.
78. Qin Z., Lib X., Zhou M. A Theoretical Study on Hydrogen-Bonded Complex of Proflavine Cation and Water: The Site-dependent Feature of Hydrogen Bond Strengthening and Weakening. J. Chin. Chem. Soc., 2014, vol. 61, pp. 1199-1204. ; DOI: https://doi.org/10.1002/jccs.201400089; EDN: https://elibrary.ru/XJZMYX
79. Condon E.U. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev., 1928, vol. 32, pp. 858-872.
80. Baiardi A., Bloino J., Barone V. General Time Dependent Approach to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and Duschinsky E ects. J. Chem. Theory Comput., 2013, vol. 9, pp. 4097-4115.
81. Herzberg G., Teller E. Schwingungsstruktur der Elektronenubergange bei mehratomigen Molekulen. Z. Phys. Chem., Abt. B, 1933, vol. 21, pp. 410-446.
82. Santoro F., Lami A., Improta R., Bloino J., Barone V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. J. Chem. Phys., 2008, vol. 128, p. 224311.
83. Duschinsky F. The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle. Acta Physicochim, URSS, 1937, vol. 7, p. 551.