Abstract and keywords
Abstract (English):
The severe course of the disease caused by the coronavirus infection COVID-19 has its own characteristics that distinguish this type of virus among many infections. The paper developed and substantiated the hypothesis that respiratory and metabolic acidosis is one of the features of the pathogenesis of severe cases of COVID-19. Several mechanisms have been described that link the damaging factors of COVID-19 with acidosis, which have a trigger, stepwise nature of action with pronounced positive feedbacks. A drop in blood oxygen saturation with a decrease in blood pH in accordance with the well-known Verigo-Bohr effect is a characteristic feature of the severe course of COVID-19 and leads to depletion of the body's compensatory capabilities to regulate acidosis. Under conditions of hypoxia and acidosis, a readjustment of the immune system occurs, which prevents the completion of the disease, causing multidirectional activities to stimulate inflammation and its completion. In this case, the disease is often aggravated instead of recovery.

Keywords:
SARS-CoV-2, COVID-19, acidosis, saturation, Bohr effect, positive feedback, trigger phenomena
Text
Publication text (PDF): Read Download
References

1. Chhetri S., Khamis F., Pandak N., Al Khalili H., Said E., Petersen E. A fatal case of COVID-19 due to metabolic acidosis following dysregulate inflammatory response (cytokine storm). IDCases, 2020, vol. 21, p. e00829.

2. Shevel E. Conditions Favoring Increased COVID-19 Morbidity and Mortality: Their Common Denominator and Treatment. Isr Med Assoc J., 2020, vol. 11, no. 22, p. 680.

3. Lodyagin A.N., Bytocyrenov B.V., Shikalova I.A., Voznyuk I.A. Acidoz i toksicheskiy gemoliz - celi patogeneticheskogo lecheniya poliorgannoy patologii pri COVID-19. Vestnik vosstanovitel'noy mediciny, 2020, №. 3, s. 25-30. [Lodyagin A.N., Bytotsyrenov B.V., Shikalova I.A., Voznyuk I.A. Acidosis and toxic hemolysis are the goals of the pathogenetic treatment of multiple organ pathology in COVID-19. Herald of restorative medicine, 2020, no. 3, p. 25-30. (In Russ.)]

4. Andersen L.W., Mackenhauer J., Roberts J.C., Berg K.M., Cocchi M.N., Donnino M.W. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc., 2013, vol. 88, no. 10, pp. 1127-1140.

5. Newington J.T., Harris R.A., Cumming R.C. Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model. J Neurodegener Dis., 2013, vol. 2013, pp. 234572.

6. Kraut J.A., Madias N.E. Lactic acidosis. N Engl J Med., 2014, vol. 371, no. 24, pp. 2309-2319.

7. Ma L.N., Huang X.B., Muyayalo K.P., Mor G., Liao A.H. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol., 2020, vol. 11, pp. 279.

8. Chycki J., Kurylas A., Maszczyk A., Golas A., Zajac A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS One, 2018, vol. 13, no. 11, p. e0205708.

9. Pillai S., Davies G., Lawrence M., Whitley J., Stephens J., Williams P.R., Morris K., Evans P. A. The effect of diabetic ketoacidosis (DKA) and its treatment on clot microstructure: Are they thrombogenic? Clin Hemorheol Microcirc., 2021, vol. 77, no. 2, pp. 183-194.

10. Kraut J.A., Madias N.E. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol., 2010, vol. 6, no. 5, pp. 274-285.

11. Lunt S.Y., Vander Heiden M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol., 2011, vol. 27, pp. 441-464.

12. Borregaard N., Schwartz J H., Tauber A.I. Proton secretion by stimulated neutrophils. Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst. J Clin Invest., 1984, vol. 74, no. 2, pp. 455-459.

13. Popel A.S. Theory of oxygen transport to tissue. Crit Rev Biomed Eng., 1989, vol. 17, no. 3, pp. 257-321.

14. Ahmed M.H., Ghatge M.S., Safo M.K. Hemoglobin: Structure, Function and Allostery. Subcell Biochem., 2020, vol. 94, pp. 345-382.

15. Gell D.A. Structure and function of haemoglobins. Blood Cells Mol Dis., 2018, vol. 70, pp. 13-42.

16. Werigo B. Zur Frage über die Wirkung des Sauerstoffs auf die Kohlensäureausscheidung in den Lungen. Archiv für die gesamte Physiologie des Menschen und der Tiere, 1892, vol. 51, no. 6, pp. 321-361.

17. Bohr C., Hasselbalch K., Krogh A. Concerning a biologically important relationship-the influence of the carbon dioxide content of blood on its oxygen binding. Skand. Arch. Physiol., 1904, vol. 16, pp. 401-412.

18. Kamel K.S., Oh M.S., Halperin M.L.L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int., 2020, vol. 97, no. 1, pp. 75-88.

19. Matyukhin I., Patschan S., Ritter O., Patschan D. Etiology and Management of Acute Metabolic Acidosis: An Update. Kidney Blood Press Res., 2020, vol. 45, no. 4, pp. 523-531.

20. Foucher C.D., Tubben R.E. Lactic Acidosis. StatPearls., Treasure Island (FL), 2021.

21. Quade B.N., Parker M.D., Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol., 2021, vol. 183, p. 114278.

22. Toffaletti J.G., Rackley C.R. Monitoring Oxygen Status. Adv Clin Chem., 2016, vol. 77, pp. 103-124.

23. Srinivasan A.J., Morkane C., Martin D.S., Welsby I.J. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol., 2017, vol. 10, no. 5, pp. 449-458.

24. Stewart T., Lambourne J., Thorp-Jones D., Thomas D.W. Implementation of early management of iron deficiency in pregnancy during the SARS-CoV-2 pandemic. Eur J Obstet Gynecol Reprod Biol., 2021, vol. 258, pp. 60-62.

25. Kislyakov Yu.Ya., Breslav I.S. Dyhanie, dinamika gazov i rabotosposobnost' pri giperbarii. AN SSSR, In-t fiziologii im. I.P. Pavlova. L.: Nauka, 1988, 237 c. [Kislyakov Yu.Ya., Breslav I.S. Respiration, gas dynamics and performance in hyperbaria. Academy of Sciences of the USSR, Institute of Physiology. I.P. Pavlova. L.: Science, 1988, 237 p. (In Russ.)]

26. Kislyakov Yu.Ya. Mehanizmy transporta O2 v sisteme mikrocirkulyacii. Fiziologicheskiy zhurnal SSSR im. I.M. Sechenova, 1987, № 5, c. 569. [Kislyakov Yu.Ya. O2 transport mechanisms in the microcirculation system. Physiological journal of the USSR. THEM. Sechenov, 1987, no. 5, p. 569. (In Russ.)]

27. Zayceva A.Yu., Kislyakov Yu.Ya., Mazing M.S., Davydov V.V. Primenenie neinvazivnoy opticheskoy obuchaemoy diagnosticheskoy sistemy i matematicheskih metodov analiza mnogomernyh dannyh dlya ocenki kislorodnogo statusa tkaney cheloveka. Nauchnoe priborostroenie, 2020, t. 30, № 4, c. 113-118. [Zaitseva A.Yu., Kislyakov Yu.Ya., Masing M.S., Davydov V.V. Application of a non-invasive optical learning diagnostic system and mathematical methods for analyzing multidimensional data to assess the oxygen status of human tissues. Scientific Instrumentation, 2020, vol. 30, no. 4, pp. 113-118. (In Russ.)]

28. Hogan M.C. What Wasserman wrought: a celebratory review of 50 years of research arising from the concept of an 'anaerobic threshold'. J Physiol., 2021, vol. 599, no. 4, p. 1005.

29. Poole D.C., Rossiter H.B., Brooks G.A., Gladden L.B. The anaerobic threshold: 50+ years of controversy. J. Physiol., 2021, vol. 599, no. 3, pp. 737-767.

30. Nechipurenko Yu.D. et al. The role of acidosis in the pathogenesis of severe forms of COVID-19. Biology, 2021.


Login or Create
* Forgot password?