Abstract and keywords
Abstract (English):
Evidences are provided supporting Altrup’s membrane pollution hypothesis that links paroxysmal depolarization shifts observed during epileptic activity, and pacemaker potentials. It is proposed a connection between membrane’s physic-chemical characteristics, fluidity and pollution with neuron’s ability to conduct impulses during excitation. There are discussed previously used means of epilepsy treatment based on the ketogenic diet, as well as their possible mechanisms on the light of Altrup’s hypothesis. Among possible mechanisms for ketogenic diet, we underline ketone bodies antiepileptic actionthe role of increased synthesis of glutathione as well as the role played by polyunsaturated fatty acids (PUFA) and cholesterol as components included into the ketogenic diet. These three mechanisms, among others, lead to a regulation of fluidity and other biophysical properties of the membrane bilayer as well as to a cleansing of the membrane from amphiphilic polluters, in accordance with Altrup’s hypothesis.

Keywords:
Epileptic activity, paroxysmal depolarization shifts, pacemaker potential, Altrup’s hypothesis, membrane pollution, lateral pressure, ketogenic diet, glutathione
Text
Publication text (PDF): Read Download
References

1. Walden J., Straub H., Speckmann E.J. Epileptogenesis: contributions of calcium ions and antiepileptic calcium antagonists. Acta neurologica Scandinavica. Supplementum, 1992, vol. 140, pp. 41-46.

2. Engelborghs S., D’Hooge R., De Deyn P.P. Pathophysiology of epilepsy. Acta Neurol. Belg., 2000, vol. 100, pp. 201-213.

3. Altrup U., Hader M., Hernandez Caceres J.L., Malcharek S., Meyer M., Galla H.-J. Epileptogenic drugs in a model nervous system: Electrophysiological effects and incorporation into a phospholipid layer. Brain Research, 2006, vol. 1122, pp. 65-77.

4. Wiemann M., Wittkowski W., Altrup U., Speckmann E.-J., Alterations of neuronal fibers after epileptic activity induced by pentylenetetrazol: fine structure investigated by calcium cytochemistry and neurobiotin labeling (buccal ganglia, Helix pomatia). Cell Tissue Res, vol. 996, no. 286, pp. 43-53;

5. Speckmann E.-J., Caspers H. Paroxysmal depolarization induced by pentylenetetrazol in isolated neurons of Helix pomatia. Epilepsia, 1973, vol. 14, pp. 397-408.

6. Segal M. Epileptiform activity in microcultures containing one hippocampal neuron. J. Neurophysiol, 1991, vol. 65, pp. 761-770.

7. Nikitin E.S., Balaban P.M. Strukturno-funkcional'naya organizaciya seti serotoninergicheskih neyronov nazemnoy ulitki. Zhurnal vysshey nervnoy deyatel'nosti im. I.P.Pavlova, 2011, vol. 61, no. 6, pp. 750-762. @@Nikitin E.S., Balaban P.M. Structural and functional organization of the network of serotoninergic neurons of the land snail. Journal of Higher Nervous Activity named after I. P. Pavlov, 2011, vol. 61, no. 6, pp. 750-762. (In Russ.)

8. Fiest K.M., Sauro K.M., Wiebe S., Patten S.B., Kwon, C.S., Dykeman, J., Pringsheim, T., Lorenzetti, D.L., Jette N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 2017, vol. 88, pp. 296-303.

9. Kramer R.H., Zucker R.S. Calcium-dependent inward current in Aplysia bursting pace-maker neurones. The Journal of Physiology, 1985, vol. 362, no. 1, pp. 107-130.

10. Altrup U., Hader M., Storz U. Endogenous pacemaker potentials develop into paroxysmal. depolarization shifts (PDSs) with application of an epileptogenic drug. Brain Research, 2003, vol. 975, pp. 73-84.

11. Kononenko N.I. Dissection of a model for membrane potential oscillations in bursting neuron of snail, Helix pomatia.Comp. Biochem. Physiol, 1994, vol. 107A, pp. 323-332.

12. Garcia Reyes R.C. Study of the dynamics of paroxysmal depolarization shifts in stochastic neuronal models. B.Sc. Thesis, Faculty of Mathematics, Havana University, 2020.

13. Rezaeva M.N., Khenchel M., Hernandez J.L., Tverdislov V.A. Effect of a number of homologous monoatomic alcohols on the activity of Na, K-ATPase and its reaction with potassium ions. Biofizika, 1980, vol. 25, no. 1, pp. 41-43.

14. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 1952, vol. 117, pp. 500-544.

15. Tasaki I. Nervnoe vozbuzhdenie. Makromolekulyarnyy podhod. Moskva, Mir, 1971, 224 c. @@Tasaki I. Nervous excitement. Macromolecular approach. Moscow, Mir, 1971, 224 p. (In Russ.)

16. Tasaki I., Iwasa K. Rapid pressure changes and surface displacements in the squid giant axon associated with production of action potentials. The Japanese journal of physiology, 1982, vol. 32, no. 1, pp. 69-81.

17. Artyuhov V.G., Nakvasina M.A. Biologicheskie membrany: strukturnaya organizaciya, funkcii, modifikaciya fiziko-himicheskimi agentami: Ucheb, posobie. Voronezh: Izdatel'stvo Voronezhskogo gosudarstvennogo universiteta, 2000, 296 s. @@Artyukhov V.G., Nakvasina M.A. Biological membranes: structural organization, functions, modification by physico-chemical agents: Textbook, manual. Voronezh: Voronezh State University Publishing House, 2000, 296 p. (In Russ.)

18. Godfrey J.R., Diaz M.P., Pincus M., Kovacs-Balint Z., Feczko E., Earl E., Miranda-Dominguez O., Fair D., Sanchez M.M., Wilson M.E., Michopoulos V. Diet matters: Glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys. Psychoneuroendocrinology, 2018, vol. 91, pp. 169-178.

19. Abbott B.C., Hill A.V. Howarth J.V. The positive and negative heat production associated with a nerve impulse. Proceedings of the Royal Society of London. Series B-Biological Sciences, 1958, vol. 148, no. 931, pp. 149-187.

20. Keith H.M. Factors influencing experimentally produced convulsions. Arch. Neurol. Psych., 1933, vol. 29, pp. 148-154

21. Bough K.J., Rho J.M. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia, 2007, vol. 48, pp. 43-58.

22. Keith H.M. The effect of various factors on experimentally produced convulsions. American Journal of Diseases of Children, 1931, vol. 41, no. 3, pp. 532-543.

23. Likhodii S.S., Serbanescu I., Cortez M.A., Murphy P., Snead III O.C., Burnham W. M. Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Annals of neurology, 2003, vol. 54, no. 2, pp. 219-226.

24. Seymour K.J., Bluml S., Sutherling J., Sutherling W., Ross B.D. Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magnetic Resonance Materials in Physics, Biology and Medicine, 1999, vol. 8, no. 1, pp. 33-42.

25. Thio L.L., Wong M., Yamada K.A. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology, 2000, vol. 54, no. 2, pp. 325-325.

26. Dyrda G., Boniewska-Bernacka E., Man D., Barchiewicz K., Slota, R. The effect of organic solvents on selected microorganisms and model liposome membrane. Molecular biology reports, 2019, vol. 46, no. 3, pp. 3225-3232.

27. Stovbun S.V., Yakovenko L.V., The Physicochemical Basis of the Biological Activity and Pharmacological Properties of the Antiviral Agent Panavir. Vestnik Moskovskogo Universiteta. Fizika, 2014, no. 6, pp. 101-106.

28. Franks N.P., Lieb W.R. Volatile general anaesthetics activate a novel neuronal K+ current. Nature, 1988, vol. 333, pp. 662-664.

29. Junior H.V.N., Fonteles M.M.D.F., Mendes de Freitas R. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum. Oxidative medicine and cellular longevity, 2009, vol. 2, no. 3, pp. 130-137.

30. Harayama T., Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. Journal of Lipid Research, 2020, vol. 61, no. 8, pp. 1150-1160.

31. Martinez-Seara M.H., Rog T., Karttunen M., Vattulainen I., Reigada Kim D.Y., van Brederode H., Sullivan P.G., Spain W.J., Rho J.M., Ketone bodies protect neocortical neurons against acute oxidative stress. Epilepsia, 2004, vol. 45, suppl. 7, p. 199.

32. Nechipurenko Yu.D., Garsiya Reyes R.S., Ernandes Kaseres H.L. Gipoteza kontaminacii membran neyronov pri epilepsii i mehanizm anti-konvul'sivnogo effekta ketogennoy diety. Biofizika, v pechati. @@Nechipurenko Yu.D., Garcia Reyes R.S., Hernandez Caceres H.L. The hypothesis of contamination of neuronal membranes in epilepsy and the mechanism of the anti-convulsive effect of the ketogenic diet. Biophysics, in press (In Russ.)


Login or Create
* Forgot password?