Various methods of mixing cultures of lower phototrophs in photobioreactors for intensive cultivation are considered. The advantages and disadvantages of various methods of mixing the cell suspension are presented. The advantages of the vortex mixing method as the most promising method for mixing microalgae cultures are noted. A fundamental feature of modern gas vortex devices is the creation of swirling air flows over the cell suspension. The air vortex above the suspension, due to the friction of the air against the interface and the pressure difference between the periphery and the center of the gas-air vortex, draws the cell suspension itself into the vortex movement, due to which a rather mild effect on the cells occurs during stirring. It is this mixing of the suspension with a swirling flow that makes it possible to exclude highly turbulent and stagnant zones, hydraulic shocks and the effect of cavitation, as well as the formation of both shear stress and local overheating zones, which have a detrimental effect on the viability of cell cultures sensitive to mechanical stress. Thus, in vortex apparatuses, practically all the requirements for mixing cells for a wide class of microbiological objects are satisfied. Much less requirements are imposed on cultures of microalgae during mixing. Therefore, for intensive cultivation of microalgae, it is sufficient to use a vortex only in the suspension itself, which greatly simplifies the design of the vortex apparatus. One of the simplest ways to create a vortex inside a suspension is to rotate a flat ring (diaphragm) submerged to a certain level by means of a mechanical drive or tangential introduction of an air flow into the photobioreactor. The production of such a ring is possible from any transparent material, for example, from sheet polycarbonate, which allows making a ring of any diameter, and the process of intensive cultivation of microalgae can be easily scaled to a predetermined level.
lower phototrophs, tornado, photobioreactor
1. Alekseenko S.V., Kuybin P.A., Okulov V.L. Vvedenie v teoriyu koncentrirovannyh vihrey. Novosibirsk, Institut komp'yuternyh issledovaniy, 2003, 504 s. @@Alekseenko S.V., Kuibin P.A., Okulov V.L.Introduction to the theory of concentrated vortices. Novosibirsk, Institut komp'yuternykh issledovaniy, 2003, 504 p. (In Russ.)
2. Varaksin A.Yu., Romash M.E., Kopeycev V.N. Tornado. M.: FIZMATLIT, 2011, 344 s. @@Varaksin A.Yu., Romash M.E., Kopeytsev V.N. Tornado. Moscow: FIZMATLIT, 2011, 344 p. (In Russ.)
3. Naumov I.V. Shtern V.N. Dvuhetazhnoe tornado. Priroda, 2021, № 4, c. 12-19. DOI:https://doi.org/10.7868/S0032874X21040025 @@Naumov I.V. Shtern V.N. Two-story tornado. Priroda, 2021, no. 4, pp. 12-19. (In Russ.) DOI:https://doi.org/10.7868/S0032874X21040025
4. Puankare A. Teoriya vihrey. Izhevsk, 2000, 160 s. @@Poincaré A. Theory of vortices. Izhevsk, 2000, 160 p. (In Russ.)
5. Kozlov V.V. Obschaya teoriya vihrey. Izhevsk, 1998, 238 s. @@Kozlov V.V. General theory of vortices. Izhevsk, 1998, 238 p. (In Russ.)
6. Seffmen F. Dzh. Dinamika vihrey. M.: Nauchnyy mir, 2000, 376 s. @@Saffman F.J. Dynamics of vortices. Moscow: Nauchnyy mir, 2000, 376 p. (In Russ.)
7. Lyandzberg A.R., Latkin A.S. Vihrevye teploobmenniki i kondensaciya v zakruchennom potoke. Petropavlovsk-Kamchatskiy: KamchatGTU, 2004, 149 s. @@Lyandzberg A.R., Latkin A.S. Vortex heat exchangers and swirling condensation. Petropavlovsk-Kamchatsky: KamchatGTU, 2004, 149 p. (In Russ.)
8. Suslov A.D., Ivanov S.V., Murashkin A.V., Chizhikov Yu.V. Vihrevye apparaty. M., Mashinostroenie, 1985, 256 s. @@Suslov A.D., Ivanov S.V., Murashkin A.V., Chizhikov Yu.V. Vortex devices. Moscow, Mashinostroyeniye, 1985, 256 p. (In Russ.)
9. Vorob'ev I.D., Kislyh V. I., Harchenko V.A. Massoobmen v kletochnom kul'tivatore "Biokol'". Gidrodinamika i processy perenosa v bioreaktorah. Novosibirsk, In-t teplofiziki, 1989, c. 35-40. @@Vorobiev I.D., Kislykh V.I., Kharchenko V.A. Mass transfer in the cell cultivator "Biokol". Hydrodynamics and transfer processes in bioreactors. Novosibirsk, Institut teplofiziki, 1989, pp. 35-40. (In Russ.)]
10. Kislyh V.I., Ramazanov Yu.A., Maystrenko V.F., Mertvecov N.P. Vihrevoy bioreaktor «Biok» 1. Opyt kul'tivirovaniya shtamma E. coli BL 21 (DE 3) rZZSA, produciruyuschego rekombinantnyy antiogenin cheloveka. Biotehnologiya, 2000, № 4, c. 72-79. @@Kislykh V.I., Ramazanov Yu.A., Maistrenko V.F., Mertvetsov N.P. Vortex bioreactor "Biok" 1. Experience of cultivation of E. coli BL 21 (DE 3) pZZSA strain, producing recombinant human antiogenin. Biotechnology, 2000, no. 4, pp. 72-79. (In Russ.)
11. Mertvecov N.P., Ramazanov Yu.A., Repkov A.P., Dudarev A.N., Kislyh V.I. Gazovihrevye bioreaktory «Biok». Ispol'zovanie v sovremennoy biotehnologii. Novosibirsk: Nauka, 2002, 118 s. @@Mertvetsov N.P., Ramazanov Yu.A., Repkov A.P., Dudarev A.N., Kislykh V.I. «Biok» gas vortex bioreactors. Use in modern biotechnology. Novosibirsk: Nauka, 2002, 118 p. (In Russ.)
12. Badaev B.N., Vorob'ev I.D., Kislyh V.I., Harchenko V.A., Repkov A.P. Apparat dlya kul'tivirovaniya kletok tkaney ili mikroorganizmov. Pat. SU 1779690 (51) MPK C12M 1/04 (1990.01). Zayavka: № 89 4700908, zayavl. 06.06.1989, opubl. 07.12.1992, byul. № 34. @@Badaev B.N., Vorobiev I.D., Kislykh V.I., Kharchenko V.A., Repkov A.P. Apparatus for the cultivation of tissue cells or microorganisms. Pat. SU 1779690 (51) MPK C12M 1/04 (1990.01). Application: No. 89 4700908, app. 06.06.1989, publ. 07.12.1992, bul. no. 34. (In Russ.)
13. Kislyh V.I., Ramazanov Yu.A., Repkov A.P., Vorob'ev I.D. Apparat dlya suspenzionnogo kul'tivirovaniya kletok tkaney i mikroorganizmov. Pat.RU 2125579 C1, MPK S12M 1/14,3/00. № 98117375/13, zayavl. 22.09.1998, opubl. 27.08.1999, byul. № 34. @@Kislykh V.I., Ramazanov Yu.A., Repkov A.P., Vorobiev I.D. Apparatus for suspension cultivation of tissue cells and microorganisms. Pat.RU 2125579 C1, MPK C12M 1 / 14.3 / 00. No. 98117375/13, app. 09/22/1998, publ. 27.08.1999, bul. no. 34. (In Russ.)
14. Gevorgiz R.G., Zheleznova S.N., Zozulya Yu.V., Uvarov I.P., Repkov A.P., Lelekov A.S. Promyshlennaya tehnologiya proizvodstva biomassy morskoy diatomei Cylindrotheca closterium (Ehrenberg) Reimann & Lewin s ispol'zovaniem gazovihrevogo fotobioreaktora. Aktual'nye voprosy biologicheskoy fiziki i himii. BFFH-2016: materialy XI mezhdunarodnoy nauchno-tehnicheskoy konferencii, g. Sevastopol', 25-29 aprelya 2016 g.: v 2 t., Sevastopol', 2016, t. 1, s. 73-77. @@Gevorgiz R.G., Zheleznova S.N., Zozulya Yu.V., Uvarov I.P., Repkov A.P., Lelekov A.S. Industrial technology for the production of biomass of the marine diatom Cylindrotheca closterium (Ehrenberg) Reimann & Lewin using a gas vortex photobioreactor.Russian Journal of Biological Physics and Chemistry. Materials of the XI International Scientific and Technical Conference, Sevastopol, April 25-29, 2016: in 2 volumes, Sevastopol, 2016, vol. 1, pp. 73-77. (In Russ.)
15. Gevorgiz R.G., Zheleznova S.N., Nehoroshev M.V., Bobko N.I., Zozulya Yu.V., Uvarov I.P. Promyshlennaya tehnologiya polucheniya fukoksantina - morskogo protivoopuholevogo karotinoida. Rossiyskiy bioterapevticheskiy zhurnal, 2017, t. 16, № 51, s. 22. @@Gevorgiz R.G., Zheleznova S.N., Nekhoroshev M.V., Bobko N.I., Zozulya Yu.V., Uvarov I.P. Industrial technology for producing fucoxanthin, a marine antitumor carotenoid. Rossiyskiy bioterapevticheskiy zhurnal, 2017, vol. 16, iss. 51, p. 22. (In Russ.)
16. Zozulya Yu.V., Rozhkov O.A., Uvarov I.P., Gevorgiz R.G. Kormovaya kompleksnaya biologicheski aktivnaya dobavka dlya zhivotnyh i ptic. Pat.RU 2708161 C1, MPK A23K 10/16 (2019.08); A23K 10/30 (2019.08); A23K 20/28 (2019.08). № 2019111587, zayavl. 16.04.2019, opubl. 05.12.2019, byul. № 34. @@Zozulya Yu.V., Rozhkov O.A., Uvarov I.P., Gevorgiz R.G. Forage complex biologically active additive for animals and birds. Pat.RU 2708161 C1, MPK A23K 10/16 (2019.08); A23K 10/30 (2019.08); A23K 20/28 (2019.08). No. 2019111587, app. 04/16/2019, publ. 05.12.2019, bul. no. 34. (In Russ.)