OXIDATIVE STRESS IN THE INTRACELLULAR ZINC SIGNALING SYSTEM: IN VITRO INVESTIGATION ON HUMAN ERYTHROCYTES
Abstract and keywords
Abstract (English):
It was demonstrated the existence of specific receptors on the surface of red blood cells and intracellular stores responsible for maintaining zinc homeostasis using intracellular and extracellular zinc chelators - TPEN and DTPA. At the same time, it was shown that rise the cytosolic pool of labile Zn2+ over 100 nM leads to the initiation of apoptotic processes. The intracellular molecular mechanisms leading to Zn2+ release from cellular stores determine the cytotoxic zinc effects. Moreover, an inverse relationship between the intracellular labile zinc pool and esterase activity of red blood cells under modeling oxidative stress using H2O2 in vitro was revealed. It indicates the direct participation of Zn2+ in triggering eryptosis and that “prooxidants/antioxidants” imbalance in favor of the former acts as a trigger of this process. At the same time, an increase in the expression level of cytosolic thiol-containing metallothioneins was detected, both in red blood cells depleted by Zn2+ and in cells after the oxidative stress induction. These indicate the functioning of metallothioneins as an adjuvant antioxidant in the protective system of red blood cells under oxidative stress.

Keywords:
human erythrocytes, zinc homeostasis, labile zinc pool, esterase activity, metallothioneins, oxidative stress
Text
Publication text (PDF): Read Download
References

1. Outten C.E., O'Halloran T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science, 2001, vol. 292, pp. 2488-2492. doi:https://doi.org/10.1126/science.1060331

2. Frederickson C.J., Suh S.W., Silva D., Frederickson C.J., Thompson R.B. Importance of zinc in the central nervous system: the zinc-containing neuron. The Journal of Nutrition, 2000, vol. 130, suppl 5S, pp.1471S-1483S. doi:https://doi.org/10.1093/jn/130.5.1471S

3. Haase H., Rink L. Zinc signals and immune function. Biofactors, 2014, vol. 40, pp. 27-40. doi:https://doi.org/10.1002/biof.1114

4. Eide D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta, 2006, vol. 1763, pp. 711-722. doi:https://doi.org/10.1016/j.bbamcr.2006.03.005

5. Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals, 2001, vol. 14, pp. 331-341. dOI:https://doi.org/10.1023/a:1012905406548

6. Yamasaki S., Sakata-Sogawa K., Hasegawa A., Suzuki T., Kabu K., Sato E., Kurosaki T., Yamashita S., Tokunaga M., Nishida K., Hirano T. Zinc is a novel intracellular second messenger. J. Cell Biol, 2007, vol. 177, no. 4, pp. 637-645. doi:https://doi.org/10.1083/jcb.200702081

7. McCabe M.J., Jiang S.A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab. Invest, 1993, vol. 69, no. 1, pp. 101-110. PMID: 8331893

8. Gee K.R., Zhou Z-L., Ton-That D., Sensi S.L., Weiss J.H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium, 2002, vol. 31, no. 5, pp. 245-251. doi:https://doi.org/10.1016/S0143-4160(02)00053-2

9. Harmaza Y.M., Tamashevski A.V., Slobozhanina E.I. Determination of the Dynamics of Change in the Intracellular Pool of Zinc Ions in Human Erythrocytes Using a FluoZin-3 Fluorescent Probe. Journal of Applied Spectroscopy, 2021, vol. 87, no. 6, pp. 1094-1099. doi:https://doi.org/10.1007/s10812-021-01114-6

10. Bratosin D., Mitrofan L., Palii C., Estaquier J., Montreuil J. Novel fluorescence assay using Calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A, 2005, vol. 66A, pp. 78-84. doi:https://doi.org/10.1002/cyto.a.20152

11. Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease.Int. J. Mol. Sci, 2018, vol. 19, no. 439, pp. 57-75. doi:https://doi.org/10.3390/ijms19020439

12. Harmaza Y.M., Slobozhanina E.I. Zinc essentiality and toxicity. Biophysical aspects. Biophysics, 2014, vol. 59, no. 2, pp. 264-275. doi:https://doi.org/10.1134/S0006350914020092

13. Harmaza Y.M., Tamashevski A.V., Kanash Y.S., Zubritskaya G.P., Kutko A.G., Slobozhanina E.I. The role of intracellular zinc in H2O2-induced oxidative stress in human erythrocytes. Biophysics, 2016, vol. 61, no. 6, pp. 950-958. doi:https://doi.org/10.1134/S0006350916060087

14. Garmaza Yu.M., Tamashevskiy A.V. Zn-deficitnye sostoyaniya v eritrocitah cheloveka in vitro i svobodnoradikal'nye processy. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya, 2017, № 3, s. 54-63. @@Harmaza Y.M., Tamashevski A.V. Zn-deficient states in human erythrocytes in vitro and free radical processes. J. Belarus. State Univ. Ecol, 2017, vol. 3, pp. 54-63. (In Russ)

15. Nordberg J., Arner E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med, 2001, vol. 31, pp. 1287-1312. doi:https://doi.org/10.1016/s0891-5849(01)00724-9

16. Sato M., Kondoh M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J. Exp. Med, 2002, vol. 196, pp. 9-22. doi:https://doi.org/10.1620/tjem.196.9

17. Harmaza Y.M., Tamashevski A.V., Slobozhanina E.I. The role of metallothioneins in the maintance of zinc homeostasis and state in erythrocytes of cardiologic patients with the metabolic disorders. Journal of Integrated OMICS, 2019, vol. 9, no. 1, pp. 10-16. doi:https://doi.org/10.5584/jiomics.v9i1.260


Login or Create
* Forgot password?