ECOLOGICAL BIOPHYSICS - POSSIBLE HORIZONS OF DEVELOPMENT
Abstract and keywords
Abstract (English):
The paper discusses the specificity of the approach of ecological biophysics to the study of ecological systems and the Earth's biosphere in general. The problems typical for this section of biophysics and possible approaches to their overcoming are considered. In particular, the problem of the uniqueness of ecological systems can be significantly weakened if it is possible to develop a theory of ecological similarity. The problem of the multidirectional dependence of the stability of real ecosystems and their models on the number of incoming species can be removed by switching to the models of the so-called flexible metabolism. The immense complexity of the biosphere prompts one to turn to conceptual models based on the principle of the worst-case scenario, which allow, at least in general terms, to assess the action and possible contribution of certain mechanisms to global dynamics.

Keywords:
ecological biophysics, ecosystem, autostabilization, biosphere
Text
Text (PDF): Read Download
References

1. Morovic G. Istoricheskiy ocherk. Teoreticheskaya i matematicheskaya biologiya. M.: Mir, 1968, s. 34-48. [Morowitz G. Historical sketch. Theoretical and mathematical biology. M.: Mir, 1968, pp. 34-48. (In Russ.)]

2. Vernadskiy V.I. Biosfera i noosfera. Ayris-press, 2012, 576 s. [Vernadsky V.I. Biosphere and noosphere. Iris press, 2012, 576 p. (In Russ.)]

3. Degermendzhi A.G. New directions in biophysical ecology. Chapter 14 Ch 10. In: Global Climatology and Ecodynamics: Anthropogenic Changes to Planet Earth (Springer Praxis Books/Environmental Sciences), 2009, pp. 379-396.

4. Barcev S.I., Barceva O.D. Simmetrii struktury i ekvifinal'nost' evolyucionnyh ishodov v prostyh neyrosetevyh modelyah. DAN, 2002, t. 386, № 1, s. 114-117. [Bartsev S.I., Bartseva O.D.Structure symmetries and equifinality of evolutionary outcomes in simple neural network models. DAN, 2002, vol. 386, no. 1, pp. 114-117. (In Russ.)]

5. Barcev S.I., Barceva O.D. Funkcional'no-invariantnyy podhod k probleme unikal'nosti biologicheskih sistem: prostaya neyrosetevaya model'. DAN, 2005, t. 405, № 4, s. 1-4. [Bartsev S.I., Bartseva O.D. Functionally invariant approach to the problem of the uniqueness of biological systems: a simple neural network model. DAN, 2005, vol. 405, no. 4, pp. 1-4. (In Russ.)]

6. Barcev S.I., Barceva O.D. Evristicheskie neyrosetevye modeliv biofizike: prilozhenie k probleme strukturno-funkcional'nogo sootvetstviya. Krasnoyarsk: Sibirskiy federal'nyy un-t, 2010, 115 s. [Bartsev S.I., Bartseva O.D. Heuristic neural network models in biophysics: application to the problem of structural and functional correspondence. Krasnoyarsk: Siberian Federal University, 2010, 115 p. (In Russ.)]

7. Svirezhev Yu.M. Nelineynye volny, dissipativnye struktury i katastrofy v ekologii. M.: Nauka, 1987, 386 s. [Svirezhev Yu.M. Nonlinear waves, dissipative structures and catastrophes in ecology. Moscow: Nauka, 1987, 386 p. (In Russ.)]

8. Adamovich V.V., Degermendzhi A.G. Statisticheskie zakonomernosti organizacii malovidovyh stacionarnyh soobschestv mikroorganizmov. Zh. Obschey biologii, 1985, t. XLVI, № 4, c. 527-532. [Adamovich V.V., Degermendzhi A.G. Statistical regularities of the organization of small-species stationary communities of microorganisms. J. General Biology, 1985, vol. XLVI, no. 4, pp. 527-532. (In Russ.)]

9. Degermendzhi A.G., Abakumov A.I. Princip konkurentnogo isklyucheniya v dvuhvidovom soobschestve s odnim metabolicheskim faktorom regulyacii. DAN, 2018, t. 480, № 4, s. 495-498. [Degermendzhi A.G., Abakumov A.I. The principle of competitive exclusion in a two-species community with one metabolic regulation factor. DAN, 2018, vol. 480, no. 4, pp. 495-498. (In Russ.)]

10. Degermendzhi A.G., Pechurkin N.S., Shkidchenko A.N. Autostabilizaciya faktorov, kontroliruyuschih rost v biologicheskih sistemah. Novosibirsk: Nauka, 1979, 141 s. [Degermendzhi A.G., Pechurkin N.S., Shkidchenko A.N. Autostabilization of factors that control growth in biological systems. Novosibirsk: Science, 1979, 141 p. (In Russ.)]

11. Adamovich V.A., Terskov I.A., Degermendzhi A.G. Effekt auto stabilizacii kontroliruyuschih rost faktorov i vzaimodeystviya v soobschestve. DAN, 1987, t. 235, № 5, s. 1236-1239. [Adamovich V.A., Terskov I.A., Degermendzhi A.G. The effect of self-stabilizing growth control factors and interactions in the community. DAN, 1987, vol. 235, no. 5, pp. 1236-1239. (In Russ.)]

12. Hutchinson G.E. The paradox of the plankton. The American Naturalist, 1961, vol. 95, no. 882, pp. 137-145.

13. Levine J.M., HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature, 2009, vol. 461, pp. 254-257.

14. Svirezhev Yu.M., Logofet D.O. Ustoychivost' biologicheskih soobschestv. M.: Nauka, 1978, 352 s. [Svirezhev Yu.M., Logofet D.O. Sustainability of biological communities. M.: Nauka, 1978, 352 p. (In Russ.)]

15. Winemiller K.O. Spatial and temporal variation in tropical fish trophic networks. Ecol.Monogr., 1990, vol. 60, pp. 331-367.

16. Polis G.A.Complex trophic interactions in deserts: an empirical critique of food web theory. The American Naturalist, 1991, vol. 138, pp. 123-155.

17. Ives A.R., Carpenter S.R. Stability and diversity of ecosystems. Science, 2007, vol. 317, pp. 58-62.

18. Bartsev S.I. Stoichiometric constraints and complete closure of long-term life support systems. Adv Space Res., 2004, vol. 34, no. 7, pp. 1509-1516.

19. Saltykov M.Yu., Barcev S.I., Lankin Yu.P. Zavisimost' ustoychivosti modeley zamknutyh ekosistem ot chisla vidov. Zhurnal SFU seriya «Biologiya 2», 2011, № 4, s. 197-208. [Saltykov M.Yu., Bartsev S.I., Lankin Yu.P. Dependence of the stability of models of closed ecosystems on the number of species. SibFU journal series "Biology 2", 2011, no. 4, pp. 197-208. (In Russ.)]

20. Saltykov M.Yu., Bartsev S.I., Lankin Yu.P. Stability of CELSS models as dependent upon the properties of methabolism of the described species. Adv. Space Res., 2012, vol. 49, no. 2, pp. 229-223.

21. Saltykov M.Yu., Bartsev S.I. Developing of discrimination experiment to find most adequate model of plant’s multi-nutrient functional response. IOP Conf. Series: Materials Science and Engineering, 2017, vol. 173, p. 012017. doi:https://doi.org/10.1088/1757-899X/173/1/012017

22. Bartsev S.I., Degermendzhi A.G., Sarangova A.B. Closure of Earth’s Biosphere: Evolution and Current State. Journal of Siberian Federal University. Biology, 2019 vol. 12, no. 3, pp. 337-347.

23. Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science, 2013, vol. 339, pp. 1198-1201.

24. Neukom R., Steiger N., Gómez-Navarro J.J., Wang J., Werner J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 2019, vol. 571, pp.550-572.

25. Drijfhout S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. PNAS, 2015, vol. 112, no. 43, pp. E5777-E5786.

26. Lenton T.M. et al. Climate tipping points-Too risky to bet against. Nature, 2019, vol. 575, pp. 592-595.

27. Steffen W. et al. Trajectories of the Earth System in the Anthropocene. PNAS, 2018, vol. 115, no. 33, pp. 8252-8259.

28. Barcev S.I., Degermendzhi A.G. Erohin D.V. Global'naya minimal'naya model' mnogoletney dinamiki ugleroda v biosfere. DAN, 2005, t. 401, № 2, s. 233-237. [Bartsev S.I., Degermendzhi A.G., Erokhin D.V. Global minimum model of long-term dynamics of carbon in the biosphere. DAN, 2005, vol. 401, no. 2, pp. 233-237. (In Russ.)]

29. Bartsev S.I., Degermendzhi A.G., Erokhin D.V. Principle of the worst scenario in the modelling past and future of biosphere dynamics. Ecological Modelling, 2008, vol. 216, no. 2, pp. 160-171.

30. Kondrat'ev K.Ya., Krapivin V.F. Modelirovanie global'nogo krugovorota ugleroda. M.: Fizmatlit, 2004, 336 s. [Kondratyev K.Ya., Krapivin V.F. Modeling the global carbon cycle. Moscow: Fizmatlit, 2004, 336 p. (In Russ.)]

31. IPCC, 2001. Climate Change. 2001: Scientific aspects, UNEP, 881 p.

32. Brovkin V., Sitch S., Bloh von W., Claussen M., Bauer E., Cramer W. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob. Change Biol, 2004, vol. 10, pp. 1253-1266.

33. Stainforth D.A., Aina T., Christensen C. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 2005, vol. 433, pp. 403-406.

34. Fitter A.H., Self G.K., Brown T.K., Bogie D.S., Graves J.D., Benham D., Ineson P. Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia, 1999, vol. 120, pp. 575-581.

35. Liski J., Ilvesniemi H., Makela A., Westman C.J. SO2 emissions from soil in response to climatic warming are overestimated - The decomposition of old soil organic matter is tolerant of temperature. Ambio, 1999, vol. 28, pp. 171-174.

36. Rochette P., Angers D.A., Flanagan L.B. Maize Residue Decomposition Measurement Using Soil Surface Carbon Dioxide Fluxes and Natural Abundance of Carbon-13. Soil Science Society of America Journal, 1999, vol. 63, pp. 1385-1396.

37. Risk D., Kellman L., Beltrami H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophysical Research Letters, 2002, vol. 29, no. 6, pp. 111-114.

38. Piao S., Ciais P., Friedlingstein P. et al.Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, vol. 451, pp. 49-52.

39. Wang G., Li F., Peng Y. et al. Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. Environ. Res. Lett., 2019, vol. 14, p. 10.

40. Brovkin V. Climate-vegetation interaction. J. Phys. IV France, 2002, vol. 12, pp. 52-57.

41. Pritchard S.G., Davis M.A., Mitchell R.J., Prior A.S., Boykin D.L., Rogers H.H., Runion G.B. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO2 enrichment. Environmental and Experimental Botany, 2001, vol. 46, pp. 35-69.

42. Morgan J.A., LeCain D.R., Mosier A.R., Milchunas D.G. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biol., 2001, vol. 7, pp. 451-466.

43. Gifford R.M. Implications of CO2 effects on vegetation for the global carbon budget. In: The global carbon cycle (ed. M. Heimann). Springer-Verlag, Berlin, 1993, pp. 159-199.


Login or Create
* Forgot password?