ETRANITROSYL IRON COMPLEX WITH THIOSULFATE LIGANDS PREVENTS MITOCHONDRIAL DYSFUNCTION UNDER STRESS
Abstract and keywords
Abstract (English):
The effect of stress (water deficiency, high-temperature stress) and nitric oxide donor sodium μ2-dithiosulphate-tetranitosyldiferrate tetrahydrate Na2 [Fe2 (S2O3)2 (NO)4]2 × 4H2O (TNIC-thio) on the fatty acid composition and bioenergetic characteristics of 5-day etiolated pea seedling mitochondria was studied. Stressful effects caused the activation of LPO in the mitochondrial membranes. At the same time, significant changes occurred in the content of C18 and C20 fatty acids (FA). A decrease in the content of linoleic and linolenic acids, one of the main FA components of cardiolipin in higher plants, apparently caused a decrease in the maximum rates of oxidation of NAD-dependent substrates. The. treatment of pea seeds with 10-6M TNIC-thio prevented the activation of LPO, changes in the fatty acid composition of mitochondrial membranes, and contributed to the preservation of the bioenergetic characteristics of these organelles. By preventing the decline in energy metabolism, TNIC-thio probably has adaptogenic properties, that were also reflected in physiological parameters, namely, the growth of seedlings. Treatment of pea seeds and seedlings with the studied preparation prevented inhibition of root and shoot growth in conditions of water deficiency. Based on the data obtained, it can be concluded that the protective properties of TNIC-thio are due to its antioxidant activity.

Keywords:
nitric oxide donors, water deficiency, heat stress, mitochondria, fatty acids
Text
Publication text (PDF): Read Download
References

1. Ivanova T.V., Voronkov A.S., Kuznetsova E.I., Kumakhova T.Kh., Zhirov V.K., Tsydendambaev V.D. Fatty acids of lipids of the pericarp of Cydonia oblonga Mill. and Mespilus germanica L. are involved in plant adaptation to altitudinal zonality. Reports of the Russian Academy of Sciences, 2019, vol. 486, no. 5, pp. 620-625, doi:https://doi.org/10.31857/S0869-56524865620-625. (In Russ.)

2. Zhivetiev M.A., Graskova I.A., Dudareva L.V., Stolbikova A.V., Voinikov V.K. Changes in the fatty acid composition of plants during hypothermic adaptation. Journal of Stress Physiology & Biochemistry, 2010, vol. 6, no 4, pp. 51-65. (In Russ.)

3. Hou Q., Ufer G., Bartels D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ., 2016, vol. 39, no. 5, pp. 1029-48, doi:https://doi.org/10.1111/pce.12666.

4. Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J., 2014, vol. 79, no. 4, pp. 584-96, doi:https://doi.org/10.1111/tpj.12556.

5. Grabelnykh O.I., Kirichenko K.A., Pobezhimova T.P., Borovik O.A., Pavlovskaya N.S., Lyubushkina I.V., Koroleva N.A., Voynikov V.K. wheat to a short-term exposure to negative temperatures may be due to the activation of uncoupling proteins and the ATP/ADP antiporter. Biol. Membranes, 2014, vol. 31, no. 3. (In Russ.)

6. Pastore D. The Enigmatic Metabolite Transport in Plant Mitochondria Lacking Proton Motive Force - news from Durum Wheat Mitochondria. Bioenergetics, 2014, vol. 3, no 3, pp. 121-122, doi:https://doi.org/10.4172/2167-7662.1000e121.

7. Ayala A., Muñoz M. F., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med. Longev., 2014, vol. 2014, pp. 2-67, doi:https://doi.org/10.1155/2014/360438.

8. Taylor N.L., Heazlewood J.L, Day D.A., Millar A.H. Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome. Mol Cell Proteomics, 2005, vol. 4, no. 8, pp. 1122-1133, doi:https://doi.org/10.1074/mcp.M400210-MCP200.

9. Zhigacheva I.V., Burlakova E. B. Plant Growth and Development Regulators and Their Effect on the Functional State of Mitochondria. Chemistry and Technology of Plant Substances. Chemical and Biochemical Aspects/ Ed. Ed Kutchin A.V., Shishkina L.N., Weisfeld L.I. Oakville: Apple Academic Press, 2017, chapter 12, pp. 243-278, doi: https://doi.org/10.1201/9781315207469-15.

10. Mamaeva A.A., Fomenkov A.V., Nosov I.E., Moshkov L.A., Moore Zh., Hall M.A., Novikova G.W. Regulatory role of nitric oxide in plants. Physiol. Plants, 2015, vol. 62, no. 4, pp. 459-474, doi:https://doi.org/10.7868/S0015330315040132. (In Russ.)

11. Shi H., Ye T., Zhu J.K., Chan Z. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J. Exp. Bot., 2014, vol. 65, pp. 4119-4131, doi:https://doi.org/10.1093/jxb/eru184.

12. Nabi R.B.S., Tayade R., Hussain A., Kulkarni K.P., Imran Q.M., Bong-Gyu Mun. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 2019, vol. 161, pp. 120-133, doi:https://doi.org/10.1016/j.envexpbot.2019.02.003.

13. Vanin A.F. Dinitrosyl complexes of iron with thiol-containing ligands: physical chemistry, biology, medicine. Moscow-Izhevsk: Institute for Computer Research, 2015, 220 p. (In Russ.).

14. Hasanuzzaman M.K., Nahar K., Alam Md.M., M. Fujita M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase. Australian J. Crop Science, 2012, vol. 6, no. 8, pp. 1314-1323.

15. Seabra A.B., Oliveira H.C. How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives. AIMS Molecular Science, 2016, vol. 3, no. 4, pp. 692-718, doi:https://doi.org/10.3934/molsci.2016.4.692.

16. Sanina N.A., Aldoshin S.M. Structure and properties of iron nitrosyl complexes with functional sulfur-containing ligands. Russian Chemical Bulletin, 2011, vol. 7, pp. 1199-1205, doi:https://doi.org/10.1007/s11172-011-0192-x. (In Russ.)

17. Zhou B., Guo Z., Xing J., Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot., 2005, vol. 56, pp. 3223-3228, doi:https://doi.org/10.1093/jxb/eri319.

18. Popov V.N., Ruge E.K., Starkov A.A. Influence of inhibitors of electron transport on the formation of reactive oxygen species during the oxidation of succinate by pea mitochondria. Biochemistry, 2003, vol. 68, no. 7, pp. 910-916. (In Russ.)

19. Fletcher B.I., Dillard C.D., Tappel A.L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem., 1973, vol. 52, pp. 1-9.

20. Wang J., Sunwoo H., Cherian G., Sim I.S. Fatty acid determination in chicken egg yolk. A comparison of different methods. Poultary science, 2000, vol. 79, pp. 1168-1171, doi:https://doi.org/10.1093/ps/79.8.1168.

21. Carreau J.P., Dubacq J.P. Adaptation of macroscale method to the microscale for fatty acid methyl transesterification of biological lipid extracts. J. Chromatogr., 1979, vol. 151, pp. 384-390.

22. Golovina R.V., Kuzmenko T.E. Thermodynamic Evaluation Interaction of Fatty Acid Methyl Esters with Polar and Nonpolar Stationary Phases, Based on Their Retention Indices. Chromatogr., 1977, vol. 10, no. 9, pp. 545-546, doi:https://doi.org/10.1007/BF02262915.

23. Zhigacheva I.V., Vasilyeva, S.V., Generozova I.P., Rasulov M.M. Tetranitrosyl binuclear iron complex increases the resistance of pea seedlings and E. coli cells to stress. Biochemistry (Moscow), supplementseries A: Membrane and cell biology, 2020, vol. 37, no. 2, pp. 149-153 (In Russ.).

24. Makarenko S.P., Konstantinov Y.M., Khotimchenko S.V., Konenkina T.A., Arziev A.Sh. Fatty acid composition of mitochondrial membrane lipids in cultivated (Zea mays) and wild (Elymus sibiricus). Grasses. Russ J Plant Physiol 2003, vol. 50, pp. 548-553, doi:https://doi.org/10.1023/A:1024716606132. (In Russ.)

25. Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y., Pham-Thi A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 2004, vol. 94, no 3, pp. 345-351, doi:https://doi.org/10.1093/aob/mch150.

26. Leone A., Costa A., Grillo S., Tucci M., Horvarth I., Vigh L. Acclimation to Low Water Potential Determines Changes in Membrane Fatty Acid Composition and Fluidity in Potato Cells. Plant Cell Environ., 1996, vol. 19, pp. 1103-1109, doi:https://doi.org/10.1111/j.1365-3040.1996.tb00218.x.

27. Zhigacheva I.V., Binyukov V.I., Mil E.M., Krikunova N.I., Rasulov M.M., Albantova A.A., Generozova I.P. Sodium µ2-Dithiosulphate-Tetranitrosyl Diferrate Tetrahydrate Prevents Heat Shock-Induced Mitochondria Dysfunction., Russian Journal of Plant Physiology, 2022, vol. 69, pp. 38-46 (In Russ.).

28. Saidi Y., Peter M., Finka A., Cicekli C., Vigh L., Goloubinoff P. Membrane lipid composition affects plant heat sensing and modulates Ca2+ -dependent heat shock response. Plant Signal Behav, 2010, vol. 5, no. 12, pp. 1530-1533, doi:https://doi.org/10.4161/psb.5.12.13163.

29. Falcone D.L., Ogas J.P., Somerville Ch.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol., 2004, vol. 4, pp. 17-24, doi:https://doi.org/10.1186/1471-2229-4-17.

30. Plekhova N.G., Somova L.M. The physiological role of nitric oxide in the infectious process. Advances in the physiological sciences, 2012, vol. 43, no. 3, pp. 62-68. (In Russ.).

31. Faingold I.I., Kotelnikova R.A., Smolina A.V., Poletaeva D.A., Soldatova Yu.V., Pokidova O.V., Sadkov A.P., Sanina N.A., Aldoshin S.M. Antioxidant activity of tetranitrosyl iron complex with thiosulfate ligands and its effect on the catalytic activity of mitochondrial enzymes in experiments in vitro. Doklady Biochemistry and Biophysics, vol. 488, no. 1, pp. 342-345, doi:https://doi.org/10.1134/S1607672919050120. (In Russ.)

32. Hancock J.T., Neill S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants (Basel), 2019, vol. 8, no. 2, pp. 41, doi:https://doi.org/10.3390/plants8020041307598233641.

33. Groß F., Durner J., Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci, 2013, vol. 4, pp. 419, doi:https://doi.org/10.3389/fpls.2013.00419.

34. Oemer G., Lackner K., Muigg K., Krumschnabel G., Watschinger K., Sailer S., Lindner H., Gnaiger E., Wortmann S.B., Werner E.R., Zschocke J., Kelle M.A. Molecular structural diversity of mitochondrial cardiolipins. PNAS, 2018, vol. 115, no. 16, pp. 4158-4163, doi: 0.1073/pnas.1719407115.

35. Tsydendabaev V.D., Ivanova T.V., Khalilova L.A., Kurkova E.B., Myasoedov N.A., Balnokin Yu.V. Fatty acid composition of lipids in the vegetative organs of the halophyte Suaeda Altissima at different levels of salinity. Russian Journal of Plant Physiology, 2013, vol. 60, no. 5, pp. 661-671, doi:https://doi.org/10.1134/S1021443713050142. (In Russ.)

36. Bach L., Faure J.D. Role of very-long-chain fatty acids in plant development, when chain length does matter. C R Biol., 2010, vol. 333, no. 4, pp. 361-370, doi:https://doi.org/10.1016/j.crvi.2010.01.014.

37. Bach L., Gissot L., Marion J. et al. Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J. Cell. Sci., 2011, vol. 124, no. 19, pp. 3223-3234, doi:https://doi.org/10.1242/jcs.074575.


Login or Create
* Forgot password?