A.O. Kovalevsky Institute of Biology of the South Seas of the RAS
Sevastopol State University
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Acid-sensitive ion channels (ASICs) represent a family of membrane three subunits' DEG/ENaC proteins that transport Na+ ions and are found in representatives of many taxonomic groups [1]. DEG/EnaC channels include such structural domains as the palm, β-ball, knuckle, finger, thumb and wrist [2]. They are involved in many physiological processes as proton-regulated channels, when the pH of the extracellular environment changes [3]. DEG/ENaC channels are associated with a wide range of cellular functions, such as pain sensation and epithelial Na+ transport [4]. These channels have different gating properties, from almost constant opening to rapid inactivation, so numerous pathologies are associated with damage to these channels [5]. Traditionally, the functions of these channels have been studied using toxins [6]. We found 9 acid-sensitive ion channel genes and 12 homologs with unknown function in the Trichoplax adhaerens genome, of which two amino acid sequences (QEP99390.1 and XP_002115321.1) were folded into 3D-models and used to dock amiloride, aspirin and salicylic acid. Salicylates have multiple binding sites on the acid-sensitive trichoplax receptors, including the acid pocket that is a proton sensor, which suggests their possible application in modulating the activity of the ASIC-channels of T. adhaerens.
Placozoa, genome, ASIC channels, homology, folding, docking
1. Wichmann L., Althaus M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, vol. 319, no. 4, pp. 387-400, doi:https://doi.org/10.1152/ajpregu.00144.2020.
2. Jasti J., Furukawa H., Gonzales E.B., Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007, vol. 449, no. 7160, pp. 316-323, doi:https://doi.org/10.1038/nature06163.; ; EDN: https://elibrary.ru/XQERSV
3. González-Inchauspe C., Gobetto M.N., Uchitel O.D. Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience, 2020, vol. 439, pp. 195-210, doi:https://doi.org/10.1016/j.neuroscience.2019.04.023.; ; EDN: https://elibrary.ru/HIGSTF
4. Hanukoglu I., Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene, 2016, vol. 579, no. 2, pp. 95-132, doi:https://doi.org/10.1016/j.gene.2015.12.061.; ; EDN: https://elibrary.ru/NRIDET
5. Radu B.M., Banciu A., Banciu D.D., Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. Adv. Protein. Chem. Struct. Biol., 2016, vol. 103, pp. 137-167, doi:https://doi.org/10.1016/bs.apcsb.2015.10.002.; ; EDN: https://elibrary.ru/WPFRKF
6. Cristofori-Armstrong B., Rash L.D. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology, 2017, pp. 173-184, doi:https://doi.org/10.1016/j.neuropharm.2017.04.042.; ; EDN: https://elibrary.ru/YDADET
7. Gründer S., Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology, 2015, vol. 94, pp. 9-18, doi:https://doi.org/10.1016/j.neuropharm.2014.12.016.; ; EDN: https://elibrary.ru/YEIGCX
8. Gründer S., Geissler H.S., Bässler E.L., Ruppersberg J.P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport, 2000, vol. 11, no. 8, pp. 1607-11, doi:https://doi.org/10.1097/00001756-200006050-00003.
9. Sluka K.A., Winter O.C., Wemmie J.A. Acid-sensing ion channels: A new target for pain and CNS diseases. Curr. Opin. Drug Discov. Devel., 2009, vol. 12, no. 5, pp. 693-704.; EDN: https://elibrary.ru/NAYVCJ
10. Baron A., Lingueglia E. Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives. Neuropharmacology, 2015, vol. 94, pp. 19-35, doi:https://doi.org/10.1016/j.neuropharm.2015.01.005.; ; EDN: https://elibrary.ru/VCUXTY
11. Baconguis I., Bohlen C.J., Goehring A., Julius D., Gouaux E. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell, 2014, vol. 13, no. 156, pp. 717-729, doi:https://doi.org/10.1016/j.cell.2014.01.011.; ; EDN: https://elibrary.ru/KSQOTR
12. Yang H., Yu Y., Li W.G., Yu F., Cao H., Xu T.L., Jiang H. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol., 2009, vol. 7, no. 7, e1000151, doi:https://doi.org/10.1371/journal.pbio.1000151.; ; EDN: https://elibrary.ru/YAXLAV
13. Schleicherová D., Dulias K., Osigus H.J., Paknia O., Hadrys H., Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecol. Evol., 2017, vol. 7, no. 3, pp. 895-904, doi:https://doi.org/10.1002/ece3.2678.; ; EDN: https://elibrary.ru/YXNJZF
14. Elkhatib W., Smith C.L., Senatore A. A Na(+) leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca(2+) sensing for the DEG/ENaC family close to the base of Metazoa. J. Biol. Chem., 2019, vol. 294, no. 44, pp. 16320-16336, doi:https://doi.org/10.1074/jbc.RA119.010542.; ; EDN: https://elibrary.ru/GMWGOE
15. Dorofeeva N.A., Barygin O.I., Staruschenko A., Bolshakov K.V., Magazanik L.G. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J. Neurochem., 2008, vol. 106, no. 1, pp. 429-441, doi:https://doi.org/10.1111/j.1471-4159.2008.05412.x.; ; EDN: https://elibrary.ru/LLJSYL
16. Bulkov V.A., Savchenko E.V., Kuznetsov A.V. Placozoa as a litmus test for ocean acidification. Proceedings of XVI International Scientific Conference «Modern trends in biological physics and chemistry. BPPC-2021», Sevastopol, 2021, pp. 206-207. (In Russ.); EDN: https://elibrary.ru/OEXYVA
17. Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U., Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M.L., Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta S.L., Rokhsar D.S. The Trichoplax genome and the nature of placozoans. Nature, 2008, vol. 454, no. 7207, pp. 955-960, doi:https://doi.org/10.1038/nature07191.
18. Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, vol. 47, no. 1, pp. 636-641, doi:https://doi.org/10.1093/nar/gkz268.
19. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc., 2015, vol. 10, no. 6, pp. 845-858, doi:https://doi.org/10.1038/nprot.2015.053.; ; EDN: https://elibrary.ru/UTZBHH
20. Bitencourt-Ferreira G., de Azevedo W.F. Jr. Docking with SwissDock. Methods Mol Biol., 2019, vol. 2053, pp. 189-202, doi:https://doi.org/10.1007/978-1-4939-9752-7_12.
21. Sayle R., Milner-White E.J. RasMol: Biomolecular graphics for all. Trends Biochem Sci., 1995, vol. 20, no. 9, pp. 374, doi:https://doi.org/10.1016/s0968-0004(00)89080-5.; EDN: https://elibrary.ru/AHLKMJ
22. Baconguis I., Gouaux E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature, 2012, vol. 20, no. 489, pp. 400-405, doi:https://doi.org/10.1038/nature11375.; ; EDN: https://elibrary.ru/YDATUD
23. Khavronyuk I.S., Mamontov A.A., Burkov V.A., Voronin D.P., Kuznetsov A.V. Assignment of functions to opsins of Trichoplax Trichoplax adhaerens and Trichoplax sp. H2. Russian Journal of Biological Physics and Chemistry, 2021, vol. 6, no. 4, pp. 686-694. (In Russ.); EDN: https://elibrary.ru/XOMTIS
24. Yoder N., Yoshioka C., Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature, 2018, vol. 15, no. 555, pp. 397-401, doi:https://doi.org/10.1038/nature25782.; ; EDN: https://elibrary.ru/YFSOGD