PECULIARITIES OF SALICYLIC ACID AND ASPIRIN BINDING TO ACID-SENSITIVE ION CHANNELS OF TRICHOPLAX ADHAERENS
Abstract and keywords
Abstract (English):
Acid-sensitive ion channels (ASICs) represent a family of membrane three subunits' DEG/ENaC proteins that transport Na+ ions and are found in representatives of many taxonomic groups [1]. DEG/EnaC channels include such structural domains as the palm, β-ball, knuckle, finger, thumb and wrist [2]. They are involved in many physiological processes as proton-regulated channels, when the pH of the extracellular environment changes [3]. DEG/ENaC channels are associated with a wide range of cellular functions, such as pain sensation and epithelial Na+ transport [4]. These channels have different gating properties, from almost constant opening to rapid inactivation, so numerous pathologies are associated with damage to these channels [5]. Traditionally, the functions of these channels have been studied using toxins [6]. We found 9 acid-sensitive ion channel genes and 12 homologs with unknown function in the Trichoplax adhaerens genome, of which two amino acid sequences (QEP99390.1 and XP_002115321.1) were folded into 3D-models and used to dock amiloride, aspirin and salicylic acid. Salicylates have multiple binding sites on the acid-sensitive trichoplax receptors, including the acid pocket that is a proton sensor, which suggests their possible application in modulating the activity of the ASIC-channels of T. adhaerens.

Keywords:
Placozoa, genome, ASIC channels, homology, folding, docking
Text
Publication text (PDF): Read Download
References

1. Wichmann L., Althaus M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, vol. 319, no. 4, pp. 387-400, doi:https://doi.org/10.1152/ajpregu.00144.2020.

2. Jasti J., Furukawa H., Gonzales E.B., Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007, vol. 449, no. 7160, pp. 316-323, doi:https://doi.org/10.1038/nature06163.

3. González-Inchauspe C., Gobetto M.N., Uchitel O.D. Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience, 2020, vol. 439, pp. 195-210, doi:https://doi.org/10.1016/j.neuroscience.2019.04.023.

4. Hanukoglu I., Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene, 2016, vol. 579, no. 2, pp. 95-132, doi:https://doi.org/10.1016/j.gene.2015.12.061.

5. Radu B.M., Banciu A., Banciu D.D., Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. Adv. Protein. Chem. Struct. Biol., 2016, vol. 103, pp. 137-167, doi:https://doi.org/10.1016/bs.apcsb.2015.10.002.

6. Cristofori-Armstrong B., Rash L.D. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology, 2017, pp. 173-184, doi:https://doi.org/10.1016/j.neuropharm.2017.04.042.

7. Gründer S., Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology, 2015, vol. 94, pp. 9-18, doi:https://doi.org/10.1016/j.neuropharm.2014.12.016.

8. Gründer S., Geissler H.S., Bässler E.L., Ruppersberg J.P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport, 2000, vol. 11, no. 8, pp. 1607-11, doi:https://doi.org/10.1097/00001756-200006050-00003.

9. Sluka K.A., Winter O.C., Wemmie J.A. Acid-sensing ion channels: A new target for pain and CNS diseases. Curr. Opin. Drug Discov. Devel., 2009, vol. 12, no. 5, pp. 693-704.

10. Baron A., Lingueglia E. Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives. Neuropharmacology, 2015, vol. 94, pp. 19-35, doi:https://doi.org/10.1016/j.neuropharm.2015.01.005.

11. Baconguis I., Bohlen C.J., Goehring A., Julius D., Gouaux E. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell, 2014, vol. 13, no. 156, pp. 717-729, doi:https://doi.org/10.1016/j.cell.2014.01.011.

12. Yang H., Yu Y., Li W.G., Yu F., Cao H., Xu T.L., Jiang H. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol., 2009, vol. 7, no. 7, e1000151, doi:https://doi.org/10.1371/journal.pbio.1000151.

13. Schleicherová D., Dulias K., Osigus H.J., Paknia O., Hadrys H., Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecol. Evol., 2017, vol. 7, no. 3, pp. 895-904, doi:https://doi.org/10.1002/ece3.2678.

14. Elkhatib W., Smith C.L., Senatore A. A Na(+) leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca(2+) sensing for the DEG/ENaC family close to the base of Metazoa. J. Biol. Chem., 2019, vol. 294, no. 44, pp. 16320-16336, doi:https://doi.org/10.1074/jbc.RA119.010542.

15. Dorofeeva N.A., Barygin O.I., Staruschenko A., Bolshakov K.V., Magazanik L.G. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J. Neurochem., 2008, vol. 106, no. 1, pp. 429-441, doi:https://doi.org/10.1111/j.1471-4159.2008.05412.x.

16. Bulkov V.A., Savchenko E.V., Kuznetsov A.V. Placozoa as a litmus test for ocean acidification. Proceedings of XVI International Scientific Conference «Modern trends in biological physics and chemistry. BPPC-2021», Sevastopol, 2021, pp. 206-207. (In Russ.)

17. Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U., Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M.L., Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta S.L., Rokhsar D.S. The Trichoplax genome and the nature of placozoans. Nature, 2008, vol. 454, no. 7207, pp. 955-960, doi:https://doi.org/10.1038/nature07191.

18. Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, vol. 47, no. 1, pp. 636-641, doi:https://doi.org/10.1093/nar/gkz268.

19. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc., 2015, vol. 10, no. 6, pp. 845-858, doi:https://doi.org/10.1038/nprot.2015.053.

20. Bitencourt-Ferreira G., de Azevedo W.F. Jr. Docking with SwissDock. Methods Mol Biol., 2019, vol. 2053, pp. 189-202, doi:https://doi.org/10.1007/978-1-4939-9752-7_12.

21. Sayle R., Milner-White E.J. RasMol: Biomolecular graphics for all. Trends Biochem Sci., 1995, vol. 20, no. 9, pp. 374, doi:https://doi.org/10.1016/s0968-0004(00)89080-5.

22. Baconguis I., Gouaux E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature, 2012, vol. 20, no. 489, pp. 400-405, doi:https://doi.org/10.1038/nature11375.

23. Khavronyuk I.S., Mamontov A.A., Burkov V.A., Voronin D.P., Kuznetsov A.V. Assignment of functions to opsins of Trichoplax Trichoplax adhaerens and Trichoplax sp. H2. Russian Journal of Biological Physics and Chemistry, 2021, vol. 6, no. 4, pp. 686-694. (In Russ.)

24. Yoder N., Yoshioka C., Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature, 2018, vol. 15, no. 555, pp. 397-401, doi:https://doi.org/10.1038/nature25782.


Login or Create
* Forgot password?