ELASTIC PROPERTIES OF CRYSTALS OF BIOCOMPATIBLE TINI-BASED ALLOYS WITH SHAPE MEMORY
Abstract and keywords
Abstract (English):
The authors present their own and literature data on the characteristics of elastic properties of crystals of biocompatible alloys based on titanium nickelide (nitinol) TiNi with shape memory, which have been widely used in science, technology and medicine. Elastic constants cij, malleability coefficients sij, Poisson coefficients μmin, μmax, <µ> and elastic anisotropy A, obtained experimentally and computationally, were evaluated.The numerical values of the studied parameters are analyzed in detail from the point of view of descriptive statistics. To visualize the differences in elastic characteristics, “box and whiskers” diagrams and a diagram with areas are used. Knowledge of the elastic constants of the TiNi crystal lattice and alloys based on it made it possible to calculate the values of macroscopic elastic modules E and G, the Poisson's ratio μ and their orientation dependence. Based on the data analysis, it is concluded that the low level of elastic properties of TiNi (nitinol) based alloys can be used, for example, in the development of bionic prostheses for medicine.

Keywords:
biocompatible superelastic shape memory alloys, TiNi, elastic constants, Poisson's ratio, auxetics
Text
Publication text (PDF): Read Download
References

1. Muslov S.A. Pre-martensitic states in single crystals of TiNi-TiFe and TiNi-TiCu alloys: (01.04.07). Diss. … Candidate of Physical and Mathematical Sciences. Tomsk State University named after V.V. Kuibyshev, 1987, 166 p. (In Russ.)

2. Nye J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press, 1985, 329 p.

3. Muslov S.A., Lotkov A.I., Arutyunov S.D. Extremes of elastic properties of cubic crystals. Izvestiya VUZov. Seriya Fizika, 2019, vol. 62, no. 8 (740), pp. 102-111. (In Russ.)

4. Wojciechowski K.W. Poisson’s ratio of anisotropic system. Computational methods in science and technology, 2005, vol. 11, no. 1, pp. 73-79.

5. Muslov S.A., Lotkov A.I., Timkin V.N. The Poisson's Ratio is TiNi. Perspektivnye materialy, 2021, no. 12, pp. 5-20. (In Russ.)

6. Wang X.F. et al. Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds. Physical review B, 2012, vol. 85, 134108.

7. Hatcher N., Kontsevoi O.Y., Freeman A.J. Martensitic transformation path of NiTi. Phys. Rev. B, 2009, vol. 80, 144203.

8. Bihlmayer G., Eibler R., Neckel A. Elastic properties of B2-NiTi and B2-PdTi. Phys. Rev. B, 1994, vol. 50, 13113.

9. Mercier O., Melton K.N., Gremaud G., Hagi J. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation. J. Appl. Phys., 1980, vol. 51, 1833.

10. Gaillac R., Coudert F.-X. Elastic tensor analysis. URL: http://progs.coudert.name/elate/mp?query=mp-571.

11. Kuznetsov A.V., Muslov S.A., Lotkov A.I., Khachin V.N., Grishkov V.N., Pushin V.G. TiNi elastic constants near martensitic transformations. Izvestiya VUZov. Seriya Fizika, 1987, no. 7, pp. 98-99. (In Russ.)

12. Ren X., Taniwaki K., Otsuka K., Suzuki T., Tanaka K., Chumlyakov Yu.I. Elastic constants of Ti50Ni30Cu20 aloy prior to martensitic transformation. Philosophical Magazine A, 1999, vol. 79, no. 1, pp. 31-41.

13. Ren X., Miura N., Zhang J. Otsuka K., Tanaka K., Koiwa M., Suzuki T., Chumlyakov Yu.I. A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation. Mat. Sci. Eng. A, 2001, vol. 312, pp. 196-206.

14. Sestak P. et al. The elastic constants of austenitic and martensitic phases of NiTi shape memory alloy. Pp. 120-124.

15. Zengetal Z.-Y. First-principles determination of the structure, elastic constant, phase diagram and thermodynamics of NiTi alloy. Physica B, 2010, vol. 405, pp. 3665-3672.

16. Wagner M.F.-X., Windl W. Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater, 2008, vol. 56, pp. 6232-6245.

17. Huang X., Bungaro C., Godlevsky V., Rabe K.M. Lattice instabilities of cubic NiTi from first principles. Phys.Rev. B, 2001, vol. 65, 014108.

18. Lai W.S., Liu B.X. Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering. J. Phys.: Condens. Matter, 2000, vol. 12, no. L53.

19. Lu J.-M., Hu Q.-M., Yang R. Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations. Acta Mater, 2008, vol. 56, no. 4913.

20. Ye Y.Y., Chan C.T., Ho K.M. Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt. Phys.Rev. B, 1997, vol. 56, no. 3678.

21. Fang Yu et al. First-Principles Calculations of Structural, Mechanical, and Electronic Properties of the B2-Phase NiTi Shape-Memory Alloy Under High Pressure. Computation, 2019, vol. 7, no. 57.

22. Haskins J.B., Lawson J.W. Finite temperature properties of NiTi from first principles simulations: Structure, mechanics, and thermodynamics. J. Appl. Phys., 2017, vol. 121, 205103.

23. Cheng D.Y., Zhao S.J., Wang S.Q., Ye H.Q. First-principles study of the elastic properties and electronic structure of NiTi, CoTi and FeTi. Philos. Mag. A, 2001, vol. 81, pp. 1625-1632.

24. Hu Q.M., Yang R., Lu J.M., Wang L., Johansson B., Vitos L. Effect of Zr on the properties of (TiZr)Ni alloys from first-principles calculations. Phys. Rev. B, 2007, vol. 76, 224201.

25. Yin J.Y. et al. Micromechanism of Cu and Fe alloying process on the martensitic phase transformation of NiTi-based alloys. Journal of Structural Chemistry, 2015, vol. 56, no. 6, pp. 1051-1057.

26. Tan C.L., Tian X.H., Cai W. Phys. B (Amsterdam, Neth.), 2009, vol. 404, pp. 3662-3665.

27. Epishin A.I., Lisovenko D.S. Extreme values of the Poisson's ratio of cubic crystals. Journal of Technical Physics, 2016, vol. 86, iss. 10, pp. 74-82. (In Russ.)


Login or Create
* Forgot password?