PHOTOEXCITATION OF NILE BLUE DYE IN AQUEOUS SOLUTION: TD-DFT STUDY
Abstract and keywords
Abstract (English):
The vibronic absorption spectra of Nile blue (NB) oxazine dye in an aqueous solution using 13 hybrid functionals, the 6-31++G(d,p) basis set, and the IEFPCM solvent model were calculated. It turned out that the O3LYP functional provided the best agreement with the experiment. Various parameters of the NB cation in the ground and excited states (IR spectra, atomic charges, dipole moments, and transition moment) were obtained. Maps of the distribution of electron density and electrostatic potential have been built. The influence of four strong hydrogen bonds of the dye with water molecules on the absorption spectrum was analyzed. It has been shown that two from these bonds were strengthened upon NB excitation and two ones were weakened. It was found that explicit assignment of water molecules strongly bound to the dye leads to a redshift of the spectrum as a whole and worsened its shape.

Keywords:
TD-DFT, vibronic transitions, aqueous solution, Nile blue, absorption spectrum
Text
Text (PDF): Read Download
References

1. Jose M.J., Burgess K. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron, 2006, vol. 62, pp. 11021-11037.

2. Martinez V., Henary M. Nile Red and Nile Blue: Applications and Syntheses of Structural Analogues. Chem. Eur. J., 2016, vol. 22, pp. 1-20.

3. Mohlau R., Uhlmann K. Zur kenntinss der chinazin- und oxazinfarbstoffe. Ann. Chem., 1896, vol. 289, pp. 90-130.

4. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev., 1994, vol. 94, pp. 2319-2358.

5. Krihak M., Murtagh M., Shahriari M. A Spectroscopic Study of the Effects of Various Solvents and Sol-Gel Hosts on the Chemical and Photochemical Properties of Thionin and Nile Blue A. J. Sol-Gel Sci. Technol., 1997, vol. 10, pp. 153-163.

6. Kobayashi T., Takagi Y., Kandori H., Kemnitz K., Yoshihara K. Femtosecond intermolecular electron transfer in diffusionless, weakly polar systems: nile blue in aniline and N,N-dimethylaniline. Chem. Phys. Lett., 1991, vol. 180, pp. 416-422.

7. Woislawski S. The Spectrophotometric Determination of Ionization Constants of Basic Dyes. J. Am. Chem. Soc., 1953, vol. 75, pp. 5201-5203.

8. Davis M.M., Helzer H.B. Titrimetric and Equilibrium Studies Using Indicators Related to Nile Blue A. Anal. Chem., 1966, vol. 38, pp. 451-461.

9. Ma J., Ding C., Zhou J., Tian Y. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism. Biosensors Bioelectronics, 2015, vol. 70, pp. 202-208.

10. Lin C.-W., Shulok J.R., Kirley S.D., Cincotta L., Foley J.W. Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells. Cancer Res., 1991, vol. 51, pp. 2710-2719.

11. Mitra R.K., Sinha S.S., Maiti S., Pal S.K. Sequence Dependent Ultrafast Electron Transfer of Nile Blue in Oligonucleotides. J. Fluoresc., 2009, vol. 19, pp. 353-361.

12. Huang C.Z., Li Y.F., Zhang D.J., Ao X.P., Spectrophotometric study on the supramolecular interactions of nile blue sulphate with nucleic acids. Talanta, 1999, vol. 49, pp. 495-503.

13. Chen Q.-Y., Li D.-H., Yang H.-H., Zhu Q.-Z., Xu J.-G., Zhao Y. Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay. Analyst, 1999, vol. 124, pp. 901-906.

14. Huang C.Z., Li Y.F., Hu X.L. Three-dimensional spectra of the long-range assembly of Nile Blue sulfate on the molecular surface of DNA and determination of DNA by light-scattering. Anal. Chim. Acta, 1999, vol. 395, pp. 187-197.

15. Yang Y.-I., Hong H.-Y., Lee I.-S., Bai D.-G., Yoo G.-S., Choi J.-K. Detection of DNA Using a Visible Dye, Nile Blue, in Electrophoresed Gels. Anal. Biochem., 2000, vol. 280, pp. 322-324.

16. Alipour E., Allaf F.N., Mahmoudi-Badiki T. Investigation of specific interactions between Nile blue and single type oligonucleotides and its application in electrochemical detection of hepatitis C3a virus. J. Solid State Electrochem., 2016, vol. 20, pp. 183-192.

17. Mindroiu M., Zgarian R.G., Kajzar F., Rau I., De Oliveira H.C.L., Pawlicka A., Tihan G.T. DNA-based membranes for potential applications. Ionics, 2015, vol. 21, pp. 1381-1390.

18. Sagara T., Igarashi S., Sato H., Niki K. Voltammetric application of electromodulated electroreflection absorption spectroscopy: electroreflectance voltammetry as an in situ spectroelectrochemical technique. Langmuir, 1991, vol. 7, pp. 1005-1012.

19. Wainwright M. Non-porphyrin photosensitizers in biomedicine. Chem. Soc. Rev., 1996, vol. 25, pp. 351-359.

20. Van Staveren H.J., Speelman O.C., Witjes M.J., Cincotta L., Star W.M. Fluorescence imaging and spectroscopy of ethyl nile blue a in animal models of (pre)malignancies. Photochem. Photobiol., 2001, vol. 73, pp. 32-38.

21. Lin C.-W., Shulok J.R., Wong Y.-K., Schanbacher C.F., Cincotta L., Foley J.W. Photosensitization, Uptake, and Retention of Phenoxazine Nile Blue Derivatives in Human Bladder Carcinoma Cells. Cancer Res., 1991, vol. 51, pp. 1109-1116.

22. Vecchio D., Bhayana B., Huang L., Carrasco E., Evans C.L., Hamblin M.R. Structure-function relationships of Nile blue (EtNBS) derivatives as antimicrobial photosensitizers. Eur. J. Med. Chem., 2014, vol. 75, pp. 479-491.

23. Hirakawa K., Ota K., Hirayama J., Oikawa S., Kawanishi S. Nile Blue Can Photosensitize DNA Damage through Electron Transfer. Chem. Res. Toxicol., 2014, vol. 27, pp. 649-655.

24. Gattuso H., Besancenot V., Grandemange S., Marazzi M., Monari A. From non-covalent binding to irreversible DNA lesions: nile blue and nile red as photosensitizing agents. Sci. Rep., 2016, vol. 6, p. 28480.

25. Huang M., He S., Liu W., Yao Y., Miao S. Spectral Inspections on Molecular Configurations of Nile Blue A Adsorbed on the Elementary Clay Sheets. J. Phys. Chem. B, 2015, vol. 119, pp. 13302-13308.

26. Gilani A.G., Moghadam M., Hosseini S.E., Zakerhamidi M.S. A comparative study on the aggregate formation of two oxazine dyes in aqueous and aqueous urea solutions. Spectrochim. Acta A, 2011, vol. 83, pp. 100-105.

27. Niazi A., Yazdanipour A., Ghasemi J., Kubista M. Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method. Spectrochim. Acta A, 2006, vol. 65, pp. 73-78.

28. Goftar M.K., Moradi K., Kor N.M. Spectroscopic studies on aggregation phenomena of dyes. Eur. J. Exp. Biol., 2014, vol. 4, pp. 72-81.

29. Antonov L., Gergov G., Petrov V., Kubista M., Nygren J. UV-Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta, 1999, vol. 49, pp. 99-106.

30. Chakraborty A., Adhikari R., Saha S.K. Molecular interaction of oxazine dyes in aqueous solution: Temperature dependent molecular disposition of the aggregates. J. Mol. Liquids, 2011, vol. 164, pp. 250-256.

31. Ghanadzadeh Gilani A., Shokri S. Spectral and aggregative properties of two oxazine dyes in aqueous solutions containing structure-breaking and multifunctional additives. J. Mol. Liquids, 2014, vol. 193, pp. 194-203.

32. Hazafy D., Salvia M.-V., Mills A., Hutchings M.G., Evstigneev M.P., Parkinson J.A. NMR analysis of Nile Blue (C. I. Basic Blue 12) and Thionine (C. I. 52000) in solution. Dyes Pigments, 2011, vol. 88, pp. 315-325.

33. Nasr A., Hotchandani S. Excited-State Behavior of Nile Blue H-Aggregates Bound to SiO2 and SnO2 Colloids. Chem. Mater., 2000, vol. 12, pp. 1529-1535.

34. Mishra S.S., Subuddhi U. Spectroscopic investigation of interaction of Nile Blue A, a potent photosensitizer, with bile salts in aqueous medium. J. Photochem. Photobiol. B, 2014, vol. 141, pp. 67-75.

35. Chubinidze K., Partsvania B., Sulaberidze T., Khuskivadze A., Davitashvili E., Koshoridze N. Luminescence enhancement in nanocomposite consisting of polyvinyl alcohol incorporated gold nanoparticles and Nile blue 690 perchlorate. Appl. Optics, 2014, vol. 53, pp. 7177-7181.

36. Fan J., Dong H., Hu M., Wang J., Zhang H., Zhu H., Sun W., Peng X. Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile Blue based near-infrared emission. Chem. Commun., 2014, vol. 50, pp. 882-884.

37. Lee S.H., Suh J.K., Li M. Determination of Bovine Serum Albumin by Its Enhancement Effect of Nile Blue Fluorescence. Bull. Korean Chem. Soc., 2003, vol. 24, pp. 45-48.

38. Kuramitz H., Piruska A., Halsall H.B., Seliskar C.J., Heineman W.R. Simultaneous Multiselective Spectroelectrochemical Sensing of the Interaction between Protein and Its Ligand Using the Redox Dye Nile Blue as a Label. Anal. Chem., 2008, vol. 80, pp. 9642-9648.

39. Mitra R.K., Sinha S.S., Pal S.K. Interactions of Nile Blue with Micelles, Reverse Micelles and a Genomic DNA. J. Fluoresc., 2008, vol. 18, pp. 423-432.

40. Das K., Jain B., Patel H.S. Nile Blue in Triton-X 100/benzene-hexane reverse micelles: a fluorescence spectroscopic study. Spectrochim. Acta A, 2004, vol. 60, pp. 2059-2064.

41. Dong J., Li Y., Zhang M., Li Z., Yan T., Qian W. Ultrasensitive surface-enhanced Raman scattering detection of alkaline phosphatase. Anal. Methods, 2014, vol. 6, pp. 9168-9172.

42. Wilson A.J., Willets K.A. Unforeseen distance-dependent SERS spectroelectrochemistry from surface-tethered Nile Blue: the role of molecular orientation. Analyst., 2016, vol. 141, pp. 5144-5151.

43. Reigue A., Auguie B., Etchegoina P.G., Le Ru E.C. CW measurements of resonance Raman profiles, line-widths, and cross-sections of fluorescent dyes: application to Nile Blue A in water and ethanol. J. Raman Spectrosc., 2013, vol. 44, pp. 573-581.

44. Esmaeili B., Heng L.Y., Ling T.L. Nile Blue chromoionophore-doped kappa-carrageenan for a novel reflectometric urea biosensor. Sensors Actuators B, 2015, vol. 221, pp. 969-977.

45. Madsen J., Canton I., Warren N.J., Themistou E., Blanazs A., Ustbas B., Tian X., Pearson R., Battaglia G., Lewis A.L., Armes S.P. Nile Blue-Based Nanosized pH Sensors for Simultaneous Far-Red and Near-Infrared Live Bioimaging. J. Am. Chem. Soc., 2013, vol. 135, pp. 14863-14870.

46. Gao Y.-S., Zhu X.-F., Xu J.-K., Lu L.-M., Wang W.-M., Yang T.-T., Xing H.-K., Yu Y.-F. Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection. Anal. Biochem., 2016, vol. 500, pp. 80-87.

47. Jin H., Zhao C., Gui R., Gao X., Wang Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta, 2018, vol. 1025, pp. 154-162.

48. Duan R., Li C., Liu S., Liu Z., Li Y., Zhu J., Hu X. A selective fluorescence quenching method for the determination of trace hypochlorite in water samples with nile blue A. J. Taiwan Inst. Chem. Eng., 2015, vol. 50, pp. 43-48.

49. Chen Q., Cheng Z., Du L., Zhu P., Tan K. A sensitive three-signal assay for the determination of PFOS based on the interaction with Nile blue A. Anal. Methods, 2018, vol. 10, pp. 3052-3058.

50. Lee M.H., Lee S.W., Kim S.H., Kang C., Kim J.S. Nanomolar Hg(II) Detection Using Nile Blue Chemodosimeter in Biological Media. Org. Lett., 2009, vol. 11, pp. 2101-2104.

51. Li Z., Wang J., Xu Q. Spectrophotometric Determination of Trace Amounts of Scandium with Molybdate, Nile Blue and Poly(vinyl alcohol). Anal. Sci., 1996, vol. 12, pp. 259-262.

52. Hu M., Yin J., Li Y., Zhao X. Development of a Nile-Blue Based Chemodosimeter for Hg2+ in Aqueous Solution and its Application in Biological Imaging. J. Fluoresc., 2015, vol. 25, pp. 403-408.

53. Gao H.-W., Ye Q.-S., Liu W.-G. Langmuir Aggregation of Nile Blue and Safranine T on Sodium Dodecylbenzenesulfonate Surface and Its Application to Quantitative Determination of Anionic Detergent. Anal. Sci., 2002, vol. 18, pp. 455-459.

54. Basting A., Ouw D., Schafer F.P. The phenoxazones: A new class of laser dyes. Optics Commun., 1976, vol. 18, pp. 260-262.

55. Siami A., Sabzi R.E., Rasouli F., Kheiri F. Nile Blue and Nickel Organometallic Dyes Applied in Dye-sensitized Solar Cells. Port. Electrochim. Acta, 2015, vol. 33, pp. 23-33.

56. Bancroft J.D., Cook H.C. Manual of Histological Techniques and their Diagnostic Application. Churchill Livingstone, Edinburgh, 1994.

57. Betscheider A., Jose J. Nile blue A for staining Escherichia coli in flow cytometer experiments. Anal. Biochem., 2009, vol. 384, pp. 194-196.

58. Frick A.A., Busetti F., Cross A., Lewis S.W. Aqueous Nile Blue: A Simple, Versatile and Safe Reagent for the Detection of Latent Fingermarks. Chem. Commun., 2014, vol. 50, pp. 3341-3343.

59. Shrivastava R., Jain B., Das K. Spectroscopic investigations on the binding of Methylene Blue and Nile Blue to negatively charged gold nanorods. J. Mol. Struct., 2012, vol. 1020, pp. 56-62.

60. Wilson A.J., Molina N.Y., Willets K.A. Modification of the Electrochemical Properties of Nile Blue through Covalent Attachment to Gold as Revealed by Electrochemistry and SERS. J. Phys. Chem. C, 2016, vol. 120, pp. 21091-21098.

61. Marowsky A., Gierulski A., Dick B. Double-resonant second harmonic generation from surface coverages of Nile Blue A. Optics Commun., 1985, vol. 52, pp. 339-342.

62. Craighead H.G., Glass A.M. Optical absorption of small metal particles with adsorbed dye coats. Optics Lett., 1981, vol. 6, pp. 248-250.

63. Baigar E., Gilch P., Zinth W., Stockl M., Harter P., von Feilitzsch T., Michel-Beyerle M.E. Ultrafast intramolecular electron transfer from a ferrocene donor moiety to a nile blue acceptor. Chem. Phys. Lett., 2002, vol. 352, pp. 176-184.

64. Shervedani R.K., Amini S.A. Preparation of graphene/nile blue nanocomposite: Application for oxygen reduction reaction and biosensing. Electrochim. Act., 2015, vol. 173, pp. 354-363.

65. Peng J.-J., Liu S.-P., Wang L., He Y.-Q. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra. Spectrochim. Acta A, 2010, vol. 75, pp. 1571-1576.

66. Shen Y., Liu S., Kong L., Tan X., He Y., Yang J. Detection of DNA using an “off-on” switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue. Analyst, 2014, vol. 139, pp. 5858-5867.

67. Al-Maliki A. Energy transfer studies in binary laser dye mixtures in organically modified silicates. Eur. Phys. J. D., 2014, vol. 68, p. 236.

68. Jose J., Ueno Y., Burgess K. Water-Soluble Nile Blue Derivatives: Syntheses and Photophysical Properties. Chem. Eur. J., 2009, vol. 15, pp. 418-423.

69. Liu X., Fan C., Sun R., Ge J.-F. Nile-red and Nile-blue-based near-infrared fluorescent probes for in-cellulo imaging of hydrogen sulfide. Anal. Bioanal. Chem., 2014, vol. 406, pp. 7059-7070.

70. Raju B.R., Naik S., Coutinho P.J.G., Goncalves M.S.T. Novel Nile Blue derivatives as fluorescent probes for DNA. Dyes Pigments, 2013, vol. 99, pp. 220-227.

71. Ho N.-H., Weissleder R., Tung C.-H. Development of water-soluble far-red fluorogenic dyes for enzyme sensing. Tetrahedron, 2006, vol. 62, pp. 578-585.

72. Raju B.R., Sampaio D.M.F., Silva M.M., Coutinho P.J.G., Goncalves M.S.T. Ultrasound promoted synthesis of Nile Blue derivatives. Ultrasonics Sonochem., 2014, vol. 21, pp. 360-366.

73. Basu S., Panigrahi S., Praharaj S., Ghosh S.K., Pande S., Jana S., Pal A., Pal T. Solvent Effect on the Electronic Spectra of Azine Dyes under Alkaline Condition. J. Phys. Chem. A, 2007, vol. 111, pp. 578-583.

74. Grofcsik A., Kubinyi M., Jones W. Intermolecular photoinduced proton transfer in nile blue and oxazine 720. Chem. Phys. Lett., 1996, vol. 250, pp. 261-265.

75. Douhal A. Photophysics of Nile Blue A in Proton-Accepting and Electron-Donating Solvents. J. Phys. Chem., 1994, vol. 98, pp. 13131-13137.

76. Kandori A., Kemnitz K., Yoshihara K. Subpicosecond transient absorption study of intermolecular electron transfer between solute and electron-donating solvents. J. Phys. Chem., 1992, vol. 96, pp. 8042-8048.

77. Lakowicz J.R., Zelent B., Kusba J., Gryczynski I. Distance-dependent quenching of Nile Blue fluorescence by N,N-diethylaniline observed by frequency-domain fluorometry. J. Fluoresc., 1996, vol. 6, pp. 187-194.

78. Gilani A.G., Hosseini S.E., Moghadam M., Alizadeh E. Excited state electric dipole moment of nile blue and brilliant cresyl blue: A comparative study. Spectrochim. Acta A, 2012, vol. 89, pp. 231-237.

79. Tajalli A., Gilani A.G., Zakerhamidi M.S., Tajalli P. The photophysical properties of Nile red and Nile blue in ordered anisotropic media. Dyes Pigments, 2008, vol. 78, pp. 15-24.

80. Ghanadzadeh A., Tajalli H., Zirack P., Shirdel J. On the photo-physical behavior and electro-optical effect of oxazine dyes in anisotropic host. Spectrochim. Acta A, 2004, vol. 60, pp. 2925-2932.

81. Wang X.-L., Sun R., Zhu W.-J., Sha X.-L., Ge J.-F. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions. J. Fluoresc., 2017, vol. 27, pp. 819-827.

82. Stockett M.H., Houmoller J., Nielsen S.B. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy. J. Chem. Phys., 2016, vol. 145, p. 104303.

83. Beuerman E., Makarov N.S., Drobizhev M., Rebane A. Justification of two-level approximation for description of two-photon absorption in Oxazine dyes. Proc. SPIE, 2010, vol. 7599, p. 75990X.

84. Blau W., Dankesreiter W., Penzkofer A. Saturable absorption of dyes excited to the long-wavelength region of the S0-S1 absorption band. Chem. Phys., 1984, vol. 85, pp. 473-479.

85. Fragnito H.L., Bigot J.-Y., Becker P.C., Shank C.V. Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse. Chem. Phys. Lett., 1989, vol. 160, pp. 101-104.

86. Pollard W.T., Fragnito H.L., Bigot J.-Y., Shank C.V., Mathies R.A. Quantum-mechanical theory for 6 fs dynamic absorption spectroscopy and its application to nile blue. Chem. Phys. Lett., 1990, vol. 168, pp. 239-245.

87. Steinhurst D.A., Owrutsky J.C. Second Harmonic Generation from Oxazine Dyes at the Air/Water Interface. J. Phys. Chem. B, 2001, vol. 105, pp. 3062-3072.

88. Sens R., Drexhage K.H. Fluorescence quantum yield of oxazine and carbazine laser dyes. J. Luminesc, 1981, vol. 24-25, pp. 709-712.

89. Zhang Y., Hartmann S.R. Fluorescence-line-narrowing spectroscopy of nile blue in glass and polymer at 5 K: Determination of a single-site line shape function. J. Chem. Phys., 1996, vol. 104, pp. 4371-4379.

90. Grofcsik A., Jones W.J. Stimulated emission cross-sections in fluorescent dye solutions: gain spectra and excited-state lifetimes of Nile blue A and oxazine 720. J. Chem. Soc., Faraday Trans., 1992, vol. 88, pp. 1101-1106.

91. Moshary F., Arend M., Friedberg R., Hartmann S.R. Ultrafast relaxation and modulation in the oxazine dye nile blue. Phys. Rev. A, 1992, vol. 46, pp. 33-36.

92. Weiner A.M., Ippen E.P. Femtosecond excited state relaxation of dye molecules in solution. Chem. Phys. Lett., 1985, vol. 114, pp. 456-460.

93. Taylor A.J., Erskine D.J., Tang C.L. Femtosecond vibrational relaxation of large organic molecules. Chem. Phys. Lett., 1984, vol. 103, pp. 430-435.

94. Kubinyi M., Grofcsik A., Papai I., Jones W.J. Rotational reorientation dynamics of nile blue A and oxazine 720 in protic solvents. Chem. Phys., 2003, vol. 286, pp. 81-96.

95. Lawless M.K., Mathies R.A. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities. J. Chem. Phys., 1992, vol. 96, pp. 8037-8045.

96. Egorova D., Gelin M.F., Domcke W. Analysis of vibrational coherences in homodyne and two-dimensional heterodyne photon-echo spectra of Nile Blue. Chem. Phys., 2007, vol. 341, pp. 113-122.

97. Prall B.S., Parkinson D.Y., Fleming G.R. Probing correlated spectral motion: Two-color photon echo study of Nile blue. J. Chem. Phys., 2005, vol. 123, p. 054515.

98. Nagasawa Y., Seike K., Muromoto T., Okada T. Two-Dimensional Analysis of Integrated Three-Pulse Photon Echo Signals of Nile Blue Doped in PMMA. J. Phys. Chem. A, 2003, vol. 107, pp. 2431-2441.

99. Brixner T., Mancal T., Stiopkin I.V., Fleming G.R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys., 2004, vol. 121, pp. 4221-4236.

100. Ali Q.M., Palanisamy P.K. Z-Scan Determination of the Third-Order Optical Nonlinearity of Organic Dye Nile Blue Chloride. Modern Phys. Lett. B, 2006, vol. 20, pp. 623-632.

101. Blanchard G.J. An MNDO calculational study of selected oxazine, thiazine and oxazone dyes. Chem. Phys., 1989, vol. 138, pp. 365-375.

102. Pollard W.T., Fragnito H.L., Bigot J.-Y., Shank C.V., Mathies R.A. Quantum-mechanical theory for 6 fs dynamic absorption spectroscopy and its application to nile blue. Chem Phys Lett, 1990, vol. 168, pp. 239-245.

103. Grofcsik A., Kubinyi M., Ruzsinszky A., Veszpremi T., Jones W.J. Quantum chemical studies on excited state intermolecular proton transfer of oxazine dyes. J. Mol. Structure, 2000, vol. 555, pp. 15-19.

104. Cossi M., Rega N., Scalmani G., Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem., 2003, vol. 24, pp. 669-681.

105. Fleming S., Mills A., Tuttle T. Predicting the UV-vis spectra of oxazine dyes. Beilstein J. Org. Chem., 2011, vol. 7, pp. 432-441.

106. Marazzi M., Gattuso H., Monari A. Nile blue and Nile red optical properties predicted by TD DFT and CASPT2 methods: static and dynamic solvent effects. Theor. Chem. Acc., 2016, vol. 135, p. 57.

107. Adamo C., Jacquemin D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev., 2013, vol. 42, pp. 845-856.

108. Charaf-Eddin A., Planchat A., Mennucci B., Adamo C., Jacquemin D. Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. J. Chem. Theory Comput., 2013, vol. 9, pp. 2749-2760.

109. Condon E.U. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev., 1928, vol. 32, pp. 858-872.

110. Baiardi A., Bloino J., Barone V. General Time Dependent Approach to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and Duschinsky Effects. J. Chem. Theory Comput., 2013, vol. 9, pp. 4097-4115.

111. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision C.01, Inc., Wallingford CT, 2016.

112. Herzberg G., Teller E. Schwingungsstruktur der Elektronenubergange bei mehratomigen Molekulen. Z. Phys. Chem., Abt. B, 1933, vol. 21, pp. 410-446.

113. Santoro F., Lami A., Improta R., Bloino J., Barone V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. J. Chem. Phys., 2008, vol. 128, p. 224311.

114. Duschinsky F. The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle. Acta Physicochim. URSS, 1937, vol. 7, p. 551.

115. Scalmani G., Frisch M.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys., 2010, vol. 132, p. 114110.

116. Improta R., Scalmani G., Frisch M.J., Barone V. Toward effective and reliable fluorescence energies in solution by a new State Specific Polarizable Continuum Model Time Dependent Density Functional Theory Approach. J. Chem. Phys., 2007, vol. 127, p. 074504.

117. Jacquemin D., Bremond E., Planchat A., Ciofini I., Adamo C. TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J. Chem. Theory Comput., 2011, vol. 7, pp. 1882-1892.

118. Barboza C.A., Vazquez P.A.M., Carey D.M.-L., Arratia-Perez R. A TD-DFT Basis Set and Density Functional Assessment for the Calculation of Electronic Excitation Energies of Fluorene. Int. J. Quant. Chem., 2012, vol. 112, pp. 3434-3438.

119. Jacquemin D., Bremond E., Ciofini I., Adamo C. Impact of Vibronic Couplings on Perceived Colors: Two Anthraquinones as a Working Example. J. Phys. Chem. Lett., 2012, vol. 3, pp. 468-471.

120. Lopez G.V., Chang C.-H., Johnson P.M., Hall G.E., Sears T.J., Markiewicz B., Milan M., Teslja A. What Is the Best DFT Functional for Vibronic Calculations? A Comparison of the Calculated Vibronic Structure of the S1−S0 Transition of Phenylacetylene with Cavity Ringdown Band Intensities. J. Phys. Chem. A, 2012, vol. 116, pp. 6750-6758.

121. Dierksen M., Grimme S. The Vibronic Structure of Electronic Absorption Spectra of Large Molecules:  A Time-Dependent Density Functional Study on the Influence of “Exact” Hartree-Fock Exchange. J. Phys. Chem. A, 2004, vol. 108, pp. 10225-10237.

122. Kantchev E.A.B., Norsten T.B., Sullivan M.B. Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org. Biomol. Chem., 2012, vol. 10, pp. 6682-6692.

123. Tawada Y., Tsuneda T., Yanagisawa S., Yanai T., Hirao K. A long-range-corrected time-dependent density functional theory. J. Chem. Phys., 2004, vol. 120, pp. 8425-8433.

124. Rostov I.V., Kobayashi R., Amos R.D. Comparing long-range corrected functionals in the cis-trans isomerisation of the retinal chromophore. Mol. Phys., 2012, vol. 110, pp. 2329-2336.

125. Dreuw A., Weisman J.L., Head-Gordon M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J. Chem. Phys., 2003, vol. 119, pp. 2943-2946.

126. Chiba M., Tsuneda T., Hirao K. Long-range corrected time-dependent density functional study on fluorescence of 4,4’-dimethylaminobenzonitrile. J. Chem. Phys., 2007, vol. 126, p. 034504.

127. Dennington R., Keith T.A., Millam J.M. GaussView, Version 6.1, Semichem Inc., Shawnee Mission KS, 2016.

128. Cohen A.J., Handy N.C. Dynamic correlation. Mol. Phys., 2001, vol. 99, pp. 607-615.

129. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, vol. 113, pp. 6378-6396.

130. Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules, J. Comput. Chem., 1984, vol. 5, pp. 129-145.

131. Zhao G.J., Han K.L. Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening. ChemPhysChem, 2008, vol. 9, pp. 1842-1846.

132. Qin Z., Lib X., Zhou M. A Theoretical Study on Hydrogen-Bonded Complex of Proflavine Cation and Water: The Site-dependent Feature of Hydrogen Bond Strengthening and Weakening. J. Chin. Chem. Soc., 2014, vol. 61, pp. 1199-1204.


Login or Create
* Forgot password?