OPSINS OF THE CTENOPHORE MNEMIOPSIS LEIDYI AND A NETWORK OF PROTEIN-PROTEIN INTERACTIONS
Abstract and keywords
Abstract (English):
Ctenophora are ancient and separate branch of evolutionary tree of the organic world development. They inhabit mostly epipelagic seas and demonstrate amazing mechanisms of adaptation to the environment. It is now possible with the potential technique of DNA sequencing to study biological objects not only experimentally but also theoretically. We studied opsins of the ctenophore Mnemiopsis leidyi A. Agassiz 1865 using bioinformatics methods. Additional annotation of opsins 1, 2, and 3, AFK83788.1, AFK83789.1, and AFK83790.1, respectively, was performed. Their 3D models were constructed and the localization of retinal within the protein molecules was determined. The protein environment of opsins was studied, and the first- and second-level protein neighbors were characterized. The structure of the protein-protein interaction network was shown to resemble a perceptron and, therefore, to perform the function of recognizing the patterns of the signals coming from outside. The multitasking of signaling pathways from endocytosis to Wnt signaling has been revealed, indicating the involvement of Ctenophora opsins in a wide range of genetic and physiological processes.

Keywords:
Ctenophora, opsins, signal transduction
Text
Text (PDF): Read Download
References

1. Li Y., Shen X.X., Evans B., Dunn C.W., Rokas A. Rooting the Animal Tree of Life. Mol Biol Evol., 2021, vol. 38, no. 10, pp. 4322-4333.

2. Ryan J.F., Pang K., Schnitzler C.E. et al. NISC Comparative Sequencing Program. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science, 2013, vol. 342, no. 6164, p. 1242592.

3. Moroz L.L. Multiple Origins of Neurons from Secretory Cells. Front Cell Dev Biol., 2021, vol. 9, p. 669087.

4. Bayandina Yu.S. Reaction of Mnemiopsis leidyi larvae to changes in illumination. Marine Biological Journal, 2020, vol. 5, no. 2, pp. 105-108. (In Russ.); DOI: https://doi.org/10.21072/mbj.2020.05.2.09; EDN: https://elibrary.ru/AAVFGX

5. Baiandina Iu.S., Kirin M.P., Krivenko O.V. Black Sea Mnemiopsis leidyi (Ctenophora) adult locomotion and light-induced behavior in laboratory experiments. Journal of Sea Research, 2022, vol. 180, art. no. 102152, 7 p.

6. Khavronyuk I.S., Bulkov V.A., Mamontov A.A., Chusov T.D., Kuznetsov A.V. Studencheskaya ekspeditsiya po izucheniyu sensornykh sistem morskikh obitatelei v estestvennykh usloviyakh: vozdeistvie lazerov na grebnevikov. Sevastopol', avgust 2021a.

7. Casey P.J., Gilman A.G. G protein involvement in receptor-effector coupling. J Biol Chem., 1988, vol. 263, no. 6, pp. 2577-2580.

8. Birnbaumer L. G proteins in signal transduction. Annu Rev Pharmacol Toxicol., 1990, vol. 30, pp. 675-705.

9. Attwood T.K., Findlay J.B. Fingerprinting G-protein-coupled receptors. Protein Eng., 1994, vol. 7, no. 2, pp. 195-203.; EDN: https://elibrary.ru/IVXGPL

10. Foord S.M., Bonner T.I., Neubig R.R., Rosser E.M., Pin J.P., Davenport A.P., Spedding M., Harmar A.J. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev., 2005, vol. 57, no. 2, pp. 279-288.

11. Bjarnadottir T.K., Gloriam D.E., Hellstrand S.H., Kristiansson H., Fredriksson R., Schioth H.B. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 2006, vol. 88, no. 3, pp. 263-273.

12. Harmar A.J., Hills R.A., Rosser E.M. et al. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res., 2009, vol. 37, pp. 680-685.

13. Munk C., Isberg V., Mordalski S., Harpsoe K., Rataj K., Hauser A.S., Kolb P., Bojarski A.J., Vriend G., Gloriam D.E. GPCRdb: the G protein-coupled receptor database - an introduction. Br J Pharmacol., 2016, vol. 173, no. 14, pp. 2195-2207.

14. Vassilatis D.K., Hohmann J.G., Zeng H. et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA, 2003, vol. 100, no. 8, pp. 4903-4908.

15. Laschet C., Dupuis N., Hanson J. The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol., 2018, vol. 153, pp. 62-74.; DOI: https://doi.org/10.1016/j.bcp.2018.02.016; EDN: https://elibrary.ru/PDQJAG

16. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol., 1990, vol. 215, no. 3, pp. 403-410.; DOI: https://doi.org/10.1016/S0022-2836(05)80360-2; EDN: https://elibrary.ru/SGUJER

17. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc., 2015, vol. 10, no. 6, pp. 845-858.; DOI: https://doi.org/10.1038/nprot.2015.053; EDN: https://elibrary.ru/UTZBHH

18. Bitencourt-Ferreira G., de Azevedo W.F. Jr. Docking with SwissDock. Methods Mol Biol., 2019, vol. 2053, pp. 189-202.

19. Sayle R., Milner-White E.J. RasMol: Biomolecular graphics for all. Trends Biochem Sci., 1995, vol. 20, no. 9, p. 374.; EDN: https://elibrary.ru/AHLKMJ

20. Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., Finn R.D., Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res., 2021 vol. 49, no. D1, pp. D412-D419.; DOI: https://doi.org/10.1093/nar/gkaa913; EDN: https://elibrary.ru/CQJZGI

21. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D605-D612.

22. Khavronyuk I.S., Mamontov A.A., Bulkov V.A., Voronin D.P., Kuznetsov A.V. Assignment of functions to opsins of Trichoplax adhaerens and Trichoplax sp. H2. Russian Journal of Biological Physics and Chemistry, 2021, vol. 6, no. 4, p. 686-694. (In Russ.); EDN: https://elibrary.ru/XOMTIS

23. Schnitzler C.E., Pang K., Powers M.L. et al. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol., 2012, vol. 10, p. 107.

24. Wang J., Sinha T., Wynshaw-Boris A. Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol., 2012, vol. 4, no. 5, p. a007963.

25. Garabedian M.V., Good M.C. OptoLRP6 Illuminates Wnt Signaling in Early Embryo Development. J. Mol. Biol., 2021, vol. 433, no. 18, p. 167053.

26. Craft C.M., Whitmore D.H. The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett., 1995, vol. 362, no. 2, pp. 247-255.; EDN: https://elibrary.ru/AOLPXB

27. Yamada T., Takeuchi Y., Komori N., Kobayashi H., Sakai Y., Hotta Y., Matsumoto H. A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science, 1990, vol. 248, no. 4954, pp. 483-486.; EDN: https://elibrary.ru/BHNNHN

28. Attramadal H., Arriza J.L., Aoki C., Dawson T.M., Codina J., Kwatra M.M., Snyder S.H., Caron M.G., Lefkowitz R.J. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem., 1992, vol. 267, no. 25, pp. 17882-17890.

29. Raming K., Freitag J., Krieger J., Breer H. Arrestin-subtypes in insect antennae. Cell Signal, 1993, vol. 5, no. 1, pp. 69-80.

30. Scheres B., van der Putten W.H. The plant perceptron connects environment to development. Nature, 2017, vol. 543, no. 7645, pp. 337-345.; DOI: https://doi.org/10.1038/nature22010; EDN: https://elibrary.ru/YYEPEN

31. Feuda R., Hamilton S.C., McInerney J.O., Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci USA, 2012, vol. 109, no. 46, pp. 18868-18872.

32. Mamontov A.A. The impact of monochromatic light sources on primitive metazoans: trichoplax, ctenophores and jellyfish. Final qualifying work. SevGU, 2022. (In Russ.)

33. Timsit Y., Gregoire S.P. Towards the Idea of Molecular Brains. Int J Mol Sci., 2021, vol. 22, no. 21, p. 11868.; DOI: https://doi.org/10.3390/ijms222111868; EDN: https://elibrary.ru/RNLTZT

34. Birnbaumer L., Yatani A., VanDongen A.M., Graf R., Codina J., Okabe K., Mattera R., Brown A.M. G protein coupling of receptors to ionic channels and other effector systems. Br J Clin Pharmacol., 1990, vol. 30, suppl. 1, pp. 13S-22S.

35. Clapham D.E., Neer E.J. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol., 1997 vol. 37, pp. 167-203.

36. Milligan G., Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol., 2006, vol. 147, suppl 1, pp. S46-55.

37. Syrovatkina V., Alegre K.O., Dey R., Huang X.Y. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol., 2016, vol. 428, no. 19, pp. 3850-3868.; DOI: https://doi.org/10.1016/j.jmb.2016.08.002; EDN: https://elibrary.ru/XUIALH

38. Sondek J., Bohm A., Lambright D.G., Hamm H.E., Sigler P.B. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature, 1996, vol. 379, no. 6563, pp. 369-374.

39. Routledge D., Scholpp S. Mechanisms of intercellular Wnt transport. Development, 2019, vol. 146, no. 10, p. dev176073.


Login or Create
* Forgot password?