Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
The aim of the study was to investigate the activity of NADH-dependent cytochrome b5 reductase (CYB5R) and NADPH-dependent cytochrome P450 reductase (CYPOR) in ovarian tissues after cryopreservation by lucigenin-enhanced chemiluminescence with NADH and NADPH stimulation, respectively. The results indicate that both mitochondrial and microsomal reductase activities are preserved in cryopreserved ovarian tissues. After cryopreservation, the level of production of superoxide anion radical by mitochondria drops by 3–10 times, while the presence or absence of chemotherapy has no effect, and this parameter is also not affected by the severity of the disease. Compared to the control group (patients with benign tumors), the activity of CYB5R and CYPOR of ovarian tissue in a malignant cancer process decreases 1.5–10 times depending on the disease severity, and the presence of chemotherapy dramatically affects these parameters — the activity of microsomal reductases decreases by 50–100 times in chemotherapy compared to the control group. Thus, microsomal reductase activity is a more informative parameter for assessing the functionality of cryopreserved ovarian tissue than superoxide-producing capacity of mitochondria, because, firstly, it depends on the stage of disease and prior chemotherapy, and secondly, the analytical signal of NADH/NADPH stimulated chemiluminescence is characterized by approximately 30 times higher intensity than mitochondrial chemiluminescence, which leads to higher analytical sensitivity of the technique.
cytochrome b5 reductase, cytochrome P450 reductase, ovaries, cryopreservation, chemiluminescence
1. Rodrigues A.Q., Picolo V.L., Goulart J.T., Silva I.M.G., Ribeiro R.B., Aguiar B.A., Ferreira Y.B., Oliveira D.M., Lucci C.M., de Bem A.F. et al. Metabolic activity in cryopreserved and grafted ovarian tissue using high-resolution respirometry. Sci Rep, 2021, vol. 11, p. 21517, doi:https://doi.org/10.1038/s41598-021-01082-z.; ; EDN: https://elibrary.ru/XLSOIG
2. Wietcovsky L., Til D., Salvador R.A., Amaral N.L.L., Senn, A.P., Amaral V.L.L. Ovarian tissue vitrification and heterotopic autologous transplantation in prepubertal Wistar rats. JBRA Assist Reprod, 2018, vol. 22, pp. 116-122, doi:https://doi.org/10.5935/1518-0557.20180019.
3. Poirot C., Fortin A., Lacorte J.M., Akakpo J.P., Genestie C., Vernant J.P., Brice P., Morice P., Leblanc T., Gabarre J. et al. Impact of cancer chemotherapy before ovarian cortex cryopreservation on ovarian tissue transplantation. Hum Reprod, 2019, vol. 34, pp. 1083-1094, doi:https://doi.org/10.1093/humrep/dez047.
4. Nguyen T.Y.T., Cacciottola L., Camboni A., Ravau J., De Vos M., Demeestere I., Donnez J., Dolmans M.M. Ovarian tissue cryopreservation and transplantation in patients with central nervous system tumours. Hum Reprod, 2021, vol. 36, pp. 1296-1309, doi:https://doi.org/10.1093/humrep/deaa353.
5. Wang D., Geng M., Gan D., Han G., Gao G., Xing A., Cui Y., Hu Y. Effect of resveratrol on mouse ovarian vitrification and transplantation. Reprod Biol Endocrinol, 2021, vol. 19, no. 54, doi:https://doi.org/10.1186/s12958-021-00735-y.; ; EDN: https://elibrary.ru/KVTIEB
6. Cheng J., Ruan X., Zhou Q., Li Y., Du J., Jin F., Gu M., Mueck A.O. Long-time low-temperature transportation of human ovarian tissue before cryopreservation. Reprod Biomed Online, 2021, vol. 43, pp. 172-183, doi:https://doi.org/10.1016/j.rbmo.2021.05.006.
7. Matveeva N.S., Liubitskii O.B., Osipov A.N., Vladimirov Iu A. Lucigenin-enhanced chemiluminescence of the animal tissues. Biofizika, 2007, vol. 52, pp. 1120-1127.
8. Wisniewska A., Jagiello K., Mazerska Z. NADPH-cytochrome P450 reductase, not only the partner of cytochrome P450. Postepy Biochem, 2009, vol. 55, pp. 272-278.
9. Schepetkin I.A. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases. Biochemistry (Mosc), 1999, vol. 64, pp. 25-32.; EDN: https://elibrary.ru/RQEZAH
10. Baker M.A., Krutskikh A., Curry B.J., Hetherington L., Aitken R.J. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod, 2005, vol. 73, pp. 334-342, doi:https://doi.org/10.1095/biolreprod.104.037960.; ; EDN: https://elibrary.ru/XSHDHP
11. Baker M.A., Krutskikh A., Curry B.J., McLaughlin E.A., Aitken R.J. Identification of cytochrome P450-reductase as the enzyme responsible for NADPH-dependent lucigenin and tetrazolium salt reduction in rat epididymal sperm preparations. Biol Reprod, 2004, vol. 71, pp. 307-318, doi:https://doi.org/10.1095/biolreprod.104.027748.; ; EDN: https://elibrary.ru/LVNFEP
12. Rezende F., Prior K.K., Lowe O., Wittig I., Strecker V., Moll F., Helfinger V., Schnutgen F., Kurrle N., Wempe F., et al. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays. Free Radic Biol Med, 2017, vol. 102, pp. 57-66, doi:https://doi.org/10.1016/j.freeradbiomed.2016.11.019.
13. Yuzhakov V.V., Malinova I.V., Kiseleva M.V., Fomina N.K., Bandurko L.N., Komarova E.V., Sevan'kaeva L.E., Ingel I.E., Yakovleva N.D., Kaprin A.D. Effect of Vitrification on Functional Morphology and Viability of the Ovarian Tissue. Bull Exp Biol Med, 2018, vol. 164, pp. 502-507, doi:https://doi.org/10.1007/s10517-018-4021-1.; ; EDN: https://elibrary.ru/XYCHSX
14. Elahian F., Sepehrizadeh Z., Moghimi B., Mirzaei S.A. Human cytochrome b5 reductase: structure, function, and potential applications. Crit Rev Biotechnol, 2014, vol. 34, pp. 134-143, doi:https://doi.org/10.3109/07388551.2012.732031.
15. Villalba J.M., Navarro F., Gomez-Diaz C., Arroyo A., Bello R.I., Navas P. Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol Aspects Med, 1997, vol. 18, pp. 7-13.
16. Nakamura M., Ohtaki S. Formation and reduction of ascorbate radicals by hog thyroid microsomes. Arch Biochem Biophys, 1993, vol. 305, pp. 84-90, doi:https://doi.org/10.1006/abbi.1993.1396.
17. Shimamoto N. A pathophysiological role of cytochrome p450 involved in production of reactive oxygen species. Yakugaku Zasshi, 2013, vol. 133, pp. 435-450, doi:https://doi.org/10.1248/yakushi.12-00263.; ; EDN: https://elibrary.ru/DNXTBG
18. Zangar R.C., Davydov D.R., Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol, 2004, vol. 199, pp. 316-331, doi:https://doi.org/10.1016/j.taap.2004.01.018.; ; EDN: https://elibrary.ru/MAWRBR
19. Hrycay E.G., Bandiera S.M. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Adv Pharmacol, 2015, vol. 74, pp. 35-84, doi:https://doi.org/10.1016/bs.apha.2015.03.003.; ; EDN: https://elibrary.ru/WNTCYT
20. Pillai V.C., Snyder R.O., Gumaste U., Thekkumkara T.J., Mehvar R. Effects of transient overexpression or knockdown of cytochrome P450 reductase on reactive oxygen species generation and hypoxia reoxygenation injury in liver cells. Clin Exp Pharmacol Physiol, 2011, vol. 38, pp. 846-853, doi:https://doi.org/10.1111/j.1440-1681.2011.05622.x.; ; EDN: https://elibrary.ru/PNDVBV
21. Frank L.A., Rose R.D., Anastasi M.R., Tan T.C.Y., Barry M.F., Thompson J.G., Brown H.M. Artificial blastocyst collapse prior to vitrification significantly improves Na(+)/K(+)-ATPase-dependent post-warming blastocoel re-expansion kinetics without inducing endoplasmic reticulum stress gene expression in the mouse. Reprod Fertil Dev, 2019, vol. 31, pp. 294-305, doi:https://doi.org/10.1071/RD17500.; ; EDN: https://elibrary.ru/WWEOPA
22. Chen C., Han S., Liu W., Wang Y., Huang G. Effect of vitrification on mitochondrial membrane potential in human metaphase II oocytes. J Assist Reprod Genet, 2012, vol. 29, pp. 1045-1050, doi:https://doi.org/10.1007/s10815-012-9848-1.; ; EDN: https://elibrary.ru/HARRWL
23. Hara T., Kin A., Aoki S., Nakamura S., Shirasuna K., Kuwayama T., Iwata H. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS One, 2018, vol. 13, p. 0204571, doi:https://doi.org/10.1371/journal.pone.0204571.
24. Matilla E., Martin-Cano F.E., Gonzalez-Fernandez L., Sanchez-Margallo F.M., Alvarez I.S., Macias-Garcia B. N-acetylcysteine addition after vitrification improves oocyte mitochondrial polarization status and the quality of embryos derived from vitrified murine oocytes. BMC Vet Res, 2019, vol. 15, no. 31, doi:https://doi.org/10.1186/s12917-018-1743-2.; ; EDN: https://elibrary.ru/JWELKQ
25. Gao Z., Yao G., Zhang H., Liu H., Yang Z., Liu, C., Li W., Zhao X., Wei Q., Ma, B. Resveratrol protects the mitochondria from vitrification injury in mouse 2-cell embryos. Cryobiology, 2020, vol. 95, pp. 123-129, doi:https://doi.org/10.1016/j.cryobiol.2020.05.007.
26. Saadeldin I.M., Moulavi F., Swelum A.A., Khorshid S.S., Hamid H.F., Hosseini S.M. Vitrification of camel oocytes transiently impacts mitochondrial functions without affecting the developmental potential after intracytoplasmic sperm injection and parthenogenetic activation. Environ Sci Pollut Res Int, 2020, vol. 27, pp. 44604-44613, doi:https://doi.org/10.1007/s11356-020-11070-x.; ; EDN: https://elibrary.ru/JSAHKI