FEATURES OF PROTEIN-INDUCED ASSOCIATES AT SUPERHIGH DILUTION OF ANTIBODIES TO INTERFERON-Γ
Abstract and keywords
Abstract (English):
The possibilities of using the channeling of low-energy (9-13 keV) electrons to determine the nature of changes in the positional order in the arrangement of molecular complexes of water and protein-induced associates at ultrahigh dilution of antibodies to interferon-γ without and in the presence of excipients were studied. We used the method of gas-discharge visualization, which makes it possible to record the parameters of the avalanche-streamer discharge caused by the field emission of electrons passing through the bulk and surface of the drop of the studied solutions. Studies of the structural organization of drug solutions were carried out on solutions of polyclonal affinity-purified human antibodies to interferon-γ. Solutions were obtained by repeated dilution of antibodies in purified water. Used solutions corresponding to four concentration points of antibodies. An analysis of the patterns of the gas-discharge image of solutions made it possible to determine the stereographic projections of the channels of electron motion formed by molecular complexes of solutions, as well as the energy and average concentration of electrons, their energy distribution associated with the features of the short-range order, the specifics of self-organization processes. The results obtained indicate significant changes in the water-dispersed medium during its dilution with human antibodies to interferon-γ.

Keywords:
drug solutions, electron channeling, gas discharge imaging, ultrahigh dilution of antibodies to interferon-γ
Text
Publication text (PDF): Read Download
References

1. Tarasov Sergey A., Gorbunov Evgeniy A., Don Elena S., Emelyanova Alexandra G., Kovalchuk Alexander L., Yanamala Naveena A., Schleker Sylvia S., Klein-Seetharaman Judith, Groenestein Reno, Tafani Jean-Pierre, van der Meide Peter and Epstein Oleg I. Insights into the mechanism of action of highly diluted biologics. The Journal of Immunology, 2020, vol. 205, iss. 5, pp. 1345-1354, doi:https://doi.org/10.4049/jimmunol.2000098.

2. Don E., Van der Meide N., Egorov V., Putilovskiy M., Tarasov S. The level of natural anionantibodies to IFN-gamma in varicella infection treated with antiviral drug Anaferon for children: A pilot Stady. Immunology Letters, 2020, vol. 222, pp. 90-94, doi:https://doi.org/10.1016/j.imlet.2019.10.015.

3. Epshteyn O.I. Sverkhmalyye dozy (istoriya odnogo issledovaniya). M: RAMN, 2008, 334 s. (In Russ.)

4. Syroyeshkin A.V., Pletneva T.V., Morozova M.A. Uspenskaya Ye.V., Titorovich O.V., Lesnikov Ye.V., Dobrovolʹskiy V.I. O vozmozhnosti primeneniya lazernogo metoda dlya kontrolya kachestva vysokikh razvedeniy zhidkikh lekarstvennykh sredstv. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya, 2016, no. 3, pp. 31-36. (In Russ.)

5. Shipko M.N., Stepovich M.A., Sibirev A.L., Usolʹtseva N.V., Maslennikova O.M., Smirnova A.I. Magnitoimpulʹsnoye vozdeystviye na strukturnoye sostoyaniye rastvorov poverkhnostno-aktivnykh veshchestv. Izvestiya RAN. Seriya fizicheskaya, 2018, vol. 82, no. 8, pp. 1058-1062, doi:https://doi.org/10.1134/S0367676518080367 (In Russ.)

6. Shipko M.N., Stepovich M.A., Sibirev A.L. Usoltzeva N.B., Maslennikova O.M. and Smirnova A.I. Impact of Magnetic Pulse on the Structural State of Surfactant Solutions. Bulletin of the Russian Academy of Sciences: Physics, 2018, vol. 82, no. 8, pp. 956-960, doi:https://doi.org/10.3103/S1062873818080361.

7. Gorbunov A.M., Ilʹyenko V.A., Vladimirova Ye.S. Farmakologicheskoye deystviye vodnykh preparatov, vodnykh rastvorov lekarstvennykh sredstv i vody modifitsirovannoy elektromagnitnym polem. Slabyye i sverkhslabyye polya i izlucheniya v biologii i meditsine: Nauchnyye trudy VIII mezhdunarodnogo kongressa, SPb, 2015, vol. 7, pp. 31-32. (In Russ.)

8. Shipko M.N., Usolʹtseva N.V., Sibirev A.L. Maslennikova O.M., Smirnova A.I., Stepovich M.A., Gabdulsadykova G.F. Vliyaniye impulʹsnykh elektromagnitnykh poley na pozitsionnyy i oriyentatsionnyy poryadok v vodnykh rastvorakh tsetiltrimetilammoniya bromistogo. Zhidkiye kristally i ikh prakticheskoye ispolʹzovaniye, 2018, vol. 18, no. 1, pp. 47-54, doi:https://doi.org/10.18083/LCAppl.2018.1.47. (In Russ.)

9. Shipko M.N., Stepovich M.A., Sibirev A.L, Melʹnikova O.S., Smirnova A.I., Usolʹtseva N.V. Oriyentatsionnyye effekty pri kanalirovanii kilovolʹtnykh elektronov v zhidkikh sredakh. Izvestiya RAN. Seriya fizicheskaya, 2020, vol. 84, no. 7, pp. 994-997, doi:https://doi.org/10.31857/S0367676520070273. (In Russ.)

10. Shipko M.N., Stepovich M.A., Sibirev A.L., Melnikova O.S., Smirnova A.I., Usoltzeva N.B. Orientational Effects of Kilovolt Electron Channeling in Liquid Media. Bulletin of the Russian Academy of Sciences: Physics, 2020, vol. 84, no. 7, pp. 820-823, doi:https://doi.org/10.3103/S1062873820070266.

11. Uspenskaya E.V., Syroyeshkin A.V., Smirnov A.I. Goncharuk V.V., Pleteneva T.V., Lapshin V.B. Struktura vody i lazernyye eksppess-metody opredeleniya podlinnosti. Farmatsiya, 2007, no. 5, pp. 21-23. (In Russ.)

12. Bunkin N., Shkirin A.V., Penkov N.V., Chirikov S., Ignatiev P.S., Kozlov V.A. The Physical Nature of Mesoscopic Inhomogeneities in Highly Diluted Aqueous Suspensions of Protein Particle. Phisical of Wave Phenomena, 2019, vol. 27, no. 2, pp. 102-112, doi:https://doi.org/10.3103/S1541308X19020043.

13. Syroyeshkin A.V., Smirnov A.N., Goncharuk V.V., Uspenskaya E.V., Nikolayev G.M., Popov P.I., Karmazina T.V., Samsoni-Todorov A.O., Lapshin V.B. Voda kak geterogennaya struktura, Issledovano v Rossii. Elektronnyy zhurnal, 2006, pp. 843-854. (In Russ.)

14. Ulʹyantsev A.S., Uspenskaya E.V., Pletneva T.V., Popov P.I., Samsoni-Todorov A.O., Goncharuk V.V., Syroyeshkin A.V. Ekspress-metod opredeleniya podlinnosti vodnykh rastvorov lekarstvennykh sredstv. Khimiko-terapevticheskiy zhurnal, 2009, vol. 43, no. 12, pp. 47-51. (In Russ.)

15. Vysotskiy V.I., Karlash A.YU. Osobennosti selektivnogo transporta i kanalirovaniya ionov v vodnoy srede v kanalakh biologicheskikh membran. Poverkhnostʹ. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya, 2010, no. 12, pp. 64-71. (In Russ.)

16. Melʹnikova K.N., Vislobokov A.I., Kolpakova M.E., Borisova V.A., Ignatov Yu.D. Kaliyevyye ionnyye kanaly kletochnykh membran. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii, 2009, vol. 7, no. 1, pp. 3-27. (In Russ.)

17. Ryabov V.A. Effekt kanalirovaniya. M.: Energoatomizdat, 1994, 239 p. (In Russ.)

18. Maslennikova O.M., Shipko M.N., Sibirev A.L., Stepovich M.A., Nikonorova V.G. O diagnosticheskom potentsiale metoda gazorazryadnoy vizualizatsii v otsenke effektivnosti preparatov dlya lecheniya serdechno-sosudistoy patologii. Kremlevskaya meditsina. Klinicheskiy vestnik, 2021, no. 4, pp. 91-96. (In Russ.)

19. Shipko M.N., Sibirev A.L., Maslennikova O.M. Stepovich M.A. Ispolʹzovaniye kanalirovaniya kilovolʹtnykh elektronov dlya izucheniya struktury zhidkikh obʺyektov. Sb. nauchnykh trudov VI sʺyezda biofizikov Rossii, 2019, vol. 1, pp. 395-396. (In Russ.)

20. Shein A.A., Khlebnyy Ye.S., Kershengolʹts B.M. Gazorazryadnaya vizualizatsiya -perspektivy kolichestvennogo i kachestvennogo opredeleniya veshchestv v zhidkofaznykh rastvorakh i smesyakh, Uspekhi sovremennogo yestestvoznaniya, 2004, no. 7, pp. 43. (In Russ.)

21. Yakovleva E.G. Diagnosticheskiye vozmozhnosti metoda GRV-bioelektrografii (obzor literatury). Vestnik novykh meditsinskikh tekhnologiy, 2013, no. 1, p. 8. (In Russ.)

22. Kleman M., Lavrentovich O.D. Osnovy fiziki chastichno uporyadochennykh sred: zhidkiye kristally kolloidy, fraktalʹnyye struktury, polimernyye biologicheskiye obʺyekty: per. s angl. Fizmatlit, 2007, 680 p. (In Russ.)

23. Zhou Y.F., Morais-Cabral J., Kaufman A., MacKinnon R. Chemistry of ion coordination and hidratation revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature, 2001, vol. 414, no. 6859, pp. 43-48, doi:https://doi.org/10.1038/35102009.

24. Korotkov K.G., Orlov D.V., Velichko E.N. Primeneniye metoda gazorazryadnoy vizualizatsii dlya analiza razlichnykh zhidkostey. Izv. vuzov, Priborostroyeniye, 2011, vol. 54, no. 12, pp. 40-46. (In Russ.)

25. Korotkov K.G. Printsipy analiza GRV bioelektrografii. Sankt-Peterburg: Renome, 2007, 286 p. (In Russ.)

26. Stepovich M.A., Maslennikova O.M., Shipko M.N., Sibirev A.L., Chrishtop V.V. The Use of Gas Discharge Visualization for Identifying Structured Peculiarities of Blood Components: Plasma, Platelets, and Erythrocytes. Journal of Cardiology and Cardiovascular Therapy, 2018, vol. 9, iss. 4, art. no. 555770.

27. Maslennikova O.M., Sibirev A.L., Krishtop V.V., Shipko M.N., Stepovich M.A., Lencher O.S. Issledovaniye effektivnosti transporta ionov K+ po kanalam ionnykh obmennikov v prisut·stvii lekarstvennykh sredstv - aktivatorov kaliyevykh kanalov. Russian Journal of Biological Physics and Chemistry, 2021, vol. 6, no. 2, pp. 269-274. (In Russ.)

28. Shaskolʹskaya M.P. Kristallografiya. M: Vysshaya shkola, 1976, 390 p. (In Russ.)

29. Bunkin N.F., Shkirin A.V., Ninham B.W., Chirikov S.N., Chaikov L.L., Penkov N.V., Kozlov V.A., Gudkov S.V. Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Difference between Water and Water-Ethanol Mixtures. Amer. Chem. Soc., 2020, vol. 5, no. 24, pp. 14689-14701, doi:https://doi.org/10.1021/acsomega.0c01444.

30. Badenikov A.V., Vlasov V.A., Volokitin G.G., Gorlenko N.P., Klopotov A.A., Sarkisov Yu.S. Aktivirovannaya voda i modifitsirovannyye vodnyye rastvory v tekhnologicheskikh protsessakh. Tomsk: TGASU, 2017, 276 p. (In Russ.)

31. Efendiyev A.Z., Efendiyev K.A. Kanalirovaniye gazovykh razryadov. Prikladnaya fizika, 2007, no. 1, pp. 78-84. (In Russ.)

32. Koshcheyev V.P., Shtanov Yu.N., Morgun D.A. Pravilo raspredeleniya elektronnykh i yadernykh poterʹ energii kanalirovannykh chastits. Izvestiya RAN. Seriya fizicheskaya, 2018, vol. 82, no. 2, pp. 205-209, doi:https://doi.org/10.7868/S036767651802014X. (In Russ.)


Login or Create
* Forgot password?