DYNAMICS OF THE CONCENTRATION OF CHLOROPHYLL A AND B-PHYCOERYTHRIN IN CULTURE PORPHYRIDIUM PURPUREUM IN CONDITIONS OF LIGHT AND CARBON LIMITATION
Abstract and keywords
Abstract (English):
The effect of light intensity and carbon flux on the production of chlorophyll a and B-phycoerythrin, as well as their ratios in the batch culture of Porphyridium purpureum, has been studied. It is shown that with an increase in light intensity (by 2 times) and air supply speed (by 2 times), the value of maximum productivity increases by almost 2 times, the concentration of chl a – by 1.8 times, and B-PE – by 1.6 times. The content of chlorophyll a and B-phycoerythrin in all experimental variants on the 3rd – 4th day of the experiment (the beginning of the linear growth phase) reached the maximum value. With light limiting, the content of chl a and B-PE in the biomass does not change, however, with high light intensity, a decrease is observed in the linear growth phase. The ratio of B-PE/chl a with different light and carbon support in the experiment practically does not change and averages 12.8.

Keywords:
porphyridium, chlorophyll a, B-phycoerythrin, concentration, ratio of pigments, light intensity, carbon dioxide
Text
Publication text (PDF): Read Download
References

1. Cunningham F.X., Dennenberg R.J., Mustardy L., Jursinic P.A., Gantt E. Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol., 1989, vol. 91, no. 3, pp. 1179-1187, doi:https://doi.org/10.1104/pp.91.3.1179.

2. Lestari Retno A.S., Nurlaili E.P., Priyono K. The effect of carbon dioxide concentration and the dimension of photobioreactor on the growth of microalgae Nannochloropsis sp. AIP Conference, 2019, vol. 2097, p. 030109, doi:https://doi.org/10.1063/1.5098284.

3. Borovkov A.B., Gudvilovich I.N., Novikova T.M., Klimova E.V. Production characteristics of the semi-flowing culture Porphyridium purpureum (Bory) Drew et Ross under normal illumination. Marine Biological Journal, 2022, vol. 7, no. 1, pp. 3-13, doi:https://doi.org/10.21072/mbj.2022.07.1.01. (In Russ.)

4. Zavorueva E.N., Zavoruev V.V., Krum S.P. Lability of the first photosystem of phototrophs under various environmental conditions. Krasnoyarsk: Siberian Federal University, 2011, 152 p. (In Russ.)

5. Xu Y., Shanshan W., Shengxin N., Jinglong L. A study on the synthesis and accumulation of phycoerythrin in Porphyridium purpureum. AIP Conference, 2019, vol. 2110, p. 020028, doi:https://doi.org/10.1063/1.5110822.

6. Gudvilovich I. N., Lelekov A. S., Maltsev E. I., Kulikovskiy M. S., Borovkov A. B. Growth of Porphyridium purpureum (Porphyridiales, Rhodophyta) culture and production of B-phycoerythrin under different illumination. Physiology of plants, 2021, vol. 68, no. 1, pp. 103-112, doi:https://doi.org/10.31857/S0015330320060056. (In Russ.)

7. Trenkenshu R.P., Terskov I.A., Sidko F.Ya. Dense cultures of marine microalgae. Proceedings of the Siberian Branch of the USSR Academy of Sciences. Biological Sciences Series, 1981, vol. 5, no. 1, pp. 75-82. (In Russ.)

8. Methods of physiological and biochemical study of algae in hydrobiological practice. Kyiv: Nauk. Dumka, 1975, 247 p. (In Russ.)

9. Stadnichuk I.N. Phycobiliproteins. Biological chemistry. M.: Mir, 1990, 196 p. (In Russ.)

10. Jeffrey S.W., Mantoura R.F.C., Wright S.W. Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO, 1997, 661 p.

11. Upitis V.V., Pakalne D.S., Schulce I.F. Optimization of the mineral nutrition of the red seaweed Porphyridium cruentum. Proceedings of the Academy of Sciences of the Latvian SSR, 1989, vol. 505, no. 8, pp. 95-104. (In Russ.)

12. Trenkenshu R.P., Lelekov A.S. Modeling of microalgae growth. Belgorod: CONSTANTA LLC, 2017, 152 p. (In Russ.)

13. Belyanin V.N., Sidko F.Ya., Trenkenshu A.P. Energy of photosynthetic microalgae culture. Novosibirsk: Science, 1980, 136 p. (In Russ.)

14. Sanchez-Saavedra M.P., Castro-Ochoa F.Y., Nava-Ruiz V.M. et al. Effects of nitrogen source and irradiance on Porphyridium cruentum. J. Appl. Phycol, 2017, doi:https://doi.org/10.1007/s10811-017-1284-2.

15. Satthong S., Saego K., Kitrungloadjanaporn P., Nuttavut N. Modeling the effects of light sources on the growth of algae. Satthong et al. Advances in Difference Equations, 2019, doi:https://doi.org/10.1186/s13662-019-2112-6.

16. Liang Y., Sarkany N., Cui Y. Biomass and lipid roductivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 2009, vol. 31, pp. 1043-1049, doi:https://doi.org/10.1007/s10529-009-9975-7.

17. Trenkenshu R.P., Lelekov A.S., Novikova T.M. Linear growth of marine microalgae in culture. Marine biological journal, 2018, vol. 3, no. 1, pp. 53-60. (In Russ.)

18. Lelekov A.S., Chernyshev D.N., Klochkova V.S. Quantitative patterns of growth of the accumulative culture Arthrospira platensis. Mathematical biology and bioinformatics, 2022, vol. 17, no. 1, pp. 156-170. (In Russ.)

19. Velea S., Ilie L., Filipescu L. Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. U.P.B. Sci. Bull. Univ. “Politeh.” Bucharest, Ser. B, 2011, vol. 73, p. 81.

20. Algarra P., Ruediger W. Acclimation processes in the light harvesting complex of the red alga Porphyridium purpureum (Bory) Drew et Ross, according to irradiance and nutrient availability. Plant Cell Environ, 1993, vol. 16, p. 149, doi:https://doi.org/10.1111/j.1365-3040.1993.tb00856.x.

21. Li T., Xu J., Wu H., Jiang P., Chen Z., Xiang W. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Mar. Drugs, 2019, vol. 17, p. 124, doi:https://doi.org/10.3390/md17020124.


Login or Create
* Forgot password?