POSSIBLE MOLECULAR MECHANISMS OF POLYSACCHARIDES ACTION IN VIRAL DISEASES
Abstract and keywords
Abstract (English):
Over the past decades, numerous studies have established that polysaccharides obtained from various sources have a wide range of biological activities, including antiviral action. This paper presents data mainly on the antiviral activity of polysaccharides and intracellular signaling pathways that may be involved in its manifestation, some sources and types of polysaccharides, features of their composition and structure, and the main types of their biological activities are mentioned. In connection with the COVID-19 pandemic, the features of the causative agent of this disease, the SARS-CoV-2 virus, its interactions with cell receptors, the molecular mechanisms of the consequences of the disease and the possible medicinal effect of polysaccharides in this disease are considered in more detail. In prospect, natural polysaccharides may prove to be effective therapeutic agents for various viral diseases, perhaps more effective and without side effects in comparison with traditional antiviral drugs.

Keywords:
polysaccharides, biological activity, antiviral effect, viral diseases, SARS-CoV-2
Text
Publication text (PDF): Read Download
References

1. Ramawat K.G., Merillon J.-M. (Eds.) Polysaccharides. Bioactivity and Biotechnology. Cham: Springer, 2015, 2241 p., doi:https://doi.org/10.1007/978-3-319-16298-0.

2. Misurcova L., Orsavova J., Ambrozova J.V. Algal polysaccharides and health. vol. 1, pp. 109-144.

3. Liu J., Willfor S., Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 2015, vol. 5, iss. 1, pp. 31-61, doi:https://doi.org/10.1016/j.bcdf.2014.12.001.

4. Sun Y. Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: An overview. Carbohydrate Polymers, 2011, vol. 85, pp. 490-499, doi:https://doi.org/10.1016/j.carbpol.2011.03.033.

5. Held M.A., Jiang N., Basu D., Showalter A.M., Faik A. Plant cell wall polysaccharides: structure and biosynthesis. vol. 1, pp. 3-54.

6. Li Y., Wang X., Ma X., Liu C., Wu J., Sun C. Natural polysaccharides and their derivates: a promising natural adjuvant for tumor immunotherapy. Front. Pharmacol., 2021, vol. 12, p. 621813, doi:https://doi.org/10.3389/fphar.2021.621813.

7. Herre J., Gordon S., Brown G. Dectin-1 and its role in the recognition of β-glucans by macrophages. Molecular immunology, 2004, vol. 40, pp. 869-876, doi:https://doi.org/10.1016/j.molimm.2003.10.007.

8. Yi-Ming Zhang, Li-Ying Zhang, Heng Zhou, Yang-Yang Li, Kong-Xi Wei, Cheng-Hao Li, Ting Zhou, Ju-Fang Wang, Wen-Jun Wei, Jun-Rui Hua, Yun He, Tao Hong, Yong-Qi Liu. Astragalus polysaccharide inhibits radiation-induced bystander effects by regulating apoptosis in Bone Mesenchymal Stem Cells (BMSCs). Cell Cycle, 2020, vol. 19, no. 22, pp. 3195-3207, doi:https://doi.org/10.1080/15384101.2020.1838793.

9. Lee J.-B., Takeshita A., Hayashi K., Hayashi T. Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydrate Polymers, 2011, vol. 86, no. 2, pp. 995-999, doi:https://doi.org/10.1016/j.carbpol.2011.05.059.

10. Chaisuwan W., Phimolsiripol Y., Chaiyaso T., Techapun C., Leksawasdi N., Jantanasakulwong K., Rachtanapun P., Wangtueai S., Sommano S.R., You S., Regenstein J.M., Barba F.J., Seesuriyachan P. The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Frontiers in nutrition, 2021, vol. 8, p. 772033, doi:https://doi.org/10.3389/fnut.2021.772033.

11. Trejo-Avila L.M., Morales-Martínez M.E., Ricque-Marie D., Cruz-Suarez L.E., Zapata-Benavides P., Morán-Santibanez K., Rodríguez-Padilla C.l. In vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. Virusdisease, 2014, vol. 25, no. 4, pp. 474-480, doi:https://doi.org/10.1007/s13337-014-0228-6.

12. Pereira L. Therapeutic and Nutritional Uses of Algae. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group, 2018, 560 p., doi:https://doi.org/10.1201/9781315152844.

13. Claus-Desbonnet H., Nikly E., Nalbantova V., Karcheva-Bahchevanska D., Ivanova S., Pierre G., Benbassat N., Katsarov P., Michaud P., Lukova P., Delattre C. Polysaccharides and Their Derivatives as Potential Antiviral Molecules. Viruses, 2022, vol. 14, 426, doi:https://doi.org/10.3390/v14020426.

14. Wu G.-J., Shiu S.-M., Hsieh M.-C., Tsai G.-J. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll., 2016, vol. 53, pp. 16-23, doi:https://doi.org/10.1016/j.foodhyd.2015.01.019.

15. Baltimore D. Expression of animal virus genomes. Bacteriol. Rev., 1971, vol. 35, no. 3, pp. 235-241, doi:https://doi.org/10.1128/MMBR.35.3.235-241.1971.

16. Condit R.C. Principles of Virology. Lippincott, Williams & Wilkins. Fields Virology, 2013, vol. 1, pp. 21-51.

17. Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 2020, vol. 183, no. 4, pp. 1043-1057.e15, doi:https://doi.org/10.1016/j.cell.2020.09.033.

18. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., Kallio K., Kaya T., Anastasina M., Smura T. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, vol. 370, pp. 856-860, doi:https://doi.org/10.1125/science.abd2985.

19. Gudowska-Sawczuk M., Mroczko B. The Role of Neuropilin-1 (NRP-1) in SARS-CoV-2 Infection: Review. J. Clin. Med., 2021, vol. 10, p. 2772, doi:https://doi.org/10.3390/jcm10132772.

20. Endeshaw Chekol Abebe, Teklie Mengie Ayele, Zelalem Tilahun Muche, Tadesse Asmamaw Dejen. Neuropilin 1: A Novel Entry Factor for SARS-CoV-2 Infection and a Potential Therapeutic Target. Biologics: Targets and Therapy, 2021, vol. 15, pp. 143-152, doi:https://doi.org/10.2147/BTT.S307352.

21. Wang K., Chen W., Zhang Z., Deng Y., Lian J.-Q., Du P., Wei D., Zhang Y., Sun X.-X., Gong L. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Sig. Transduct. Target. Ther., 2020, vol. 5, p. 283, doi:https://doi.org/10.1038/s41392-020-00426-x.

22. Zhou Y.Q., Wang K., Wang X.Y., Cui H.Y., Zhao Y., Zhu P., Chen Z.N. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg. Microbes Infect., 2022, vol. 11, no. 1, pp. 1135-1144, doi:https://doi.org/10.1080/22221751.2022.2059403.

23. Zhang Q., Xiang R., Huo S., Zhou Y., Jiang S., Wang Q., Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Sig. Transduct. Target. Ther., 2021, vol. 6, p. 233, doi:https://doi.org/10.1038/s41392-021-00653-w.

24. Gu Y., Cao J., Zhang X., Gao H., Wang Y., Wang J., He J., Jiang X., Zhang J., Shen G. et al. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res., 2022, vol. 32, pp. 24-37, doi:https://doi.org/10.1038/s41422-021-00595-6.

25. Hoffmann M., Pohlmann S. Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Res., 2022, vol. 32, pp. 1-2, doi:https://doi.org/10.1038/s41422-021-00603-9.

26. Mekawy A.S., Alaswad Z., Ibrahim A.A., Mohamed A.A., AlOkda A., Elserafy M. The consequences of viral infection on host DNA damage response: a focus on SARS-CoVs. J. Gen. Eng. Biotech., 2022, vol. 20, p. 104, doi:https://doi.org/10.1186/s43141-022-00388-3.

27. Panico P., Ostrosky-Wegman P., Salazar A.M. The potential role of COVID-19 in the induction of DNA damage. Mut. Res.-Rev. Mut. Res., 2022, vol. 789, p. 108411, doi:https://doi.org/10.1016/j.mrrev.2022.108411.

28. Sokullu E., Pinard M., Gauthier M.S., Coulombe B. Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: focus on the spike surface glycoprotein and RNA polymerase. Expert Opin. Drug Discov., 2021, vol. 16, no. 8, pp. 881-895, doi:https://doi.org/10.1080/17460441.2021.1909566.

29. Eskandarzade N., Ghorbani A., Samarfard S., et al. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Comput. Biol. Med., 2022, vol. 146, p. 105575, doi:https://doi.org/10.1016/j.compbiomed.2022.105575.

30. Li T., Wen Y., Guo H., Yang T., Yang H., Ji X. Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1-Nup98 Complex to Compete With mRNA Nuclear Export. Frontiers in Molecular Biosciences, 2022, vol. 8, doi:https://doi.org/10.3389/fmolb.2021.813248.

31. Andre S., Picard M., Cezar R., Roux-Dalvai F., Alleaume-Butaux A., Soundaramourty C., Santa Cruz A., Mendes-Frias A., Gotti C., Leclercq M. T cell apoptosis characterizes severe Covid-19 disease. Cell Death & Differentiation, 2022, doi:https://doi.org/10.1038/s41418-022-00936-x.

32. Generalov E.A. A water-soluble polysaccharide from Heliantnus tuberosus L.: Radioprotective, colony-stimulating, and immunomodulating effects. Biophysics, 2015, vol. 60, pp. 60-65, doi:https://doi.org/10.1134/S0006350915010121.

33. Generalov E.A. Spectral characteristics and monosaccharide composition of an interferon-inducing antiviral polysaccharide from Heliantnus tuberosus L. Biophysics, 2015, vol. 60, pp. 53-59, doi:https://doi.org/10.1134/S000635091501011X.

34. Chiba S., Ikushima H., Ueki H., Yanai H., Kimura Y., Hangai S., Nishio J., Negeshi H., Tamura T., Saijo S. et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife, 2014, vol. 3, e04177, doi:https://doi.org/10.7554/eLife.04177.

35. Moss W.C., Irvine D.J., Davis M.M., Krummel M.F. Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 23, pp.15024-15029, doi:https://doi.org/10.1073/pnas.192573999.

36. Drummond R., Dambuza I., Vautier S., Taylor J.A., Reid D.M., Bain C.C., Underhill D.M., Masopust D., Kaplan D.H., Brown G.D. CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol., 2016, vol. 9, pp. 492-502, doi:https://doi.org/10.1038/mi.2015.79.

37. Ferreira-Gomes M., Wich M., Bode S., Hube B., Jacobsen I., Jungnickel B. B Cell Recognition of Candida albicans Hyphae via TLR 2 Promotes IgG1 and IL-6 Secretion for TH17 Differentiation. Frontiers in Immunology, 2021, vol. 12, p. 698849, doi:https://doi.org/10.3389/fimmu.2021.698849.

38. Osorio F., LeibundGut-Landmann S., Lochner M., Lahl K., Sparwasser T., Eberl G., Reis e Sousa C. DC activated via dectin-1 convert Treg into IL-17 producers. Eur. J. Immunol., 2008, vol. 38, no. 12, pp. 3274-3281, doi:https://doi.org/10.1002/eji.200838950.

39. Generalov E.A., Levashova N.T., Sidorova A.E., Chumakov P.M., Yakovenko L.V. An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide. Biophysics, 2017, vol. 62, pp. 717-721, doi:https://doi.org/10.1134/S0006350917050086.


Login or Create
* Forgot password?