Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
from 01.01.2023 until now
Kirov Military Medical Academy
Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
Sigma-1 receptors are ubiquitous multifunctional ligand-operated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Acting as chaperones, sigma-1 receptors modulate a wide range of cellular processes in health and disease, including Ca2+ signaling processes. The pharmacological analogue of oxidized glutathione, drug molixan®, is used as an immunomodulator and cytoprotector in the complex therapy of bacterial, viral and oncological diseases; effective in the prevention and treatment of coronavirus infection COVID-19. To elucidate the involvement of sigma-1 receptors in the effect of molixan on the intracellular Ca2+ concentration in macrophages and in the regulation of Ca2+ signaling processes in macrophages in general, the effect of the sigma-1 receptor selective antagonist, compound BD-1063, on Ca2+ responses induced by molixan in rat peritoneal macrophages was investigated. Using Fura-2AM microfluorimetry we have shown for the first time that compound BD-1063 significantly suppresses both Ca2+ mobilization from intracellular Ca2+ stores and subsequent store-dependent Ca2+ entry, induced by molixan in peritoneal macrophages. The data obtained indicate the involvement of sigma-1 receptors in the complex signaling cascade triggered by molixan and leading to intracellular Ca2+ concentration increase in macrophages. The results also suggest the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+ entry in macrophages.
compound BD-1063, sigma-1 receptors, intracellular Ca2+ concentration, macrophages
1. Su T.-P., Hayashi T., Maurice T., Buch S., Ruoho A.E. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci., 2010, vol. 31, pp. 557-566.
2. Su T.-P., Su T.-C., Nakamura Y., Tsai S.-Y. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol. Sci., 2016, vol. 37, no. 4, pp. 262-278.
3. Rousseaux C.G., Greene S.F. Sigma receptors [σRs]: Biology in normal and diseased states. J. Recept. Signal Transduct. Res., 2016, vol. 36, no. 4, pp. 327-388.
4. Schmidt H.R., Kruse A.C. The molecular function of σ receptors: past, present, and future. Trends Pharmacol. Sci., 2019, vol. 40, no. 9, pp. 636-654.
5. Aishwarya R., Abdullah C.S., Morshed M., Remex N.S., Bhuiyan M.S. Sigmar1’s molecular, cellular, and biological functions in regulating cellular pathophysiology. Front. Physiol., 2021, vol. 12, p. 705575, doi:https://doi.org/10.3389/fphys.2021.705575.
6. Munguia-Galaviz F.J., Miranda-Diaz A.G., Cardenas-Sosa M.A., Echavarria R. Sigma-1 receptor signaling: In search of new therapeutic alternatives for cardiovascular and renal diseases. Int. J. Mol. Sci., 2023, vol. 24, 1997, doi:https://doi.org/10.3390/ijms24031997.
7. Penke B., Fulop L., Szucs M., Frecska E. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr. Neuropharmacol., 2018, vol. 16, pp. 97-116.
8. Cobos E.J., Entrena J.M., Nieto F.R., Cendán C.M., Del Pozo E. Pharmacology and therapeutic potential of sigma (1) receptor ligands. Curr. Neuropharmacol., 2008, vol. 6, no. 4, pp. 344-366.
9. Maurice T., Su T.-P. The pharmacology of sigma-1 receptors. Pharmacol. Ther., 2009, vol. 124, no. 2, pp. 195-206.
10. Chu U.B., Ruoho A.E. Biochemical pharmacology of the sigma-1 receptor. Mol. Pharmacol., 2016, vol. 89, pp. 142-153.
11. Pontisso I., Combettes L. Role of sigma-1 receptor in calcium modulation: possible involvement in cancer. Genes, 2021, vol. 12, no. 2, p. 139, doi:https://doi.org/10.3390/genes12020139.
12. Shi M., Chen F., Chen Z., Yang W., Yue S., Zhang J., Chen X. Sigma-1 receptor: a potential therapeutic target for traumatic brain injury. Front. Cell. Neurosci., 2021, vol. 15, p. 685201, doi:https://doi.org/10.3389/fncel.2021.685201.
13. Ortiz-Renteria M., Juarez-Contreras R. et al. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, pp. E1657-E1666, doi:https://doi.org/10.1073/pnas.1715972115.
14. Morales-Lázaro S.L., González-Ramírez R., Rosenbaum T. Molecular interplay between the sigma-1 receptor, steroids, and ion channels. Front. Pharmacol., 2019, vol. 10, p. 419, doi:https://doi.org/10.3389/fphar.2019.00419.
15. Cortés-Montero E., Sánchez-Blázquez P., Onetti Y., Merlos M., Garzón J. Ligands exert biased activity to regulate sigma 1 receptor interactions with cationic TRPA1, TRPV1 and TRPM8 channels. Front. Pharmacol., 2019, vol. 10, p. 634, doi:https://doi.org/10.3389/fphar.2019.00634.
16. Hayashi T., Su T.-P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 2007, vol. 131, pp. 596-610.
17. Srivats S., Balasuriya D., Pasche M., Vistal G., Edwardson J. M., Taylor C.W., Murrell-Lagnado R.D. Sigma 1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J. Cell Biol., 2016, vol. 213, no. 1, pp. 65-79.
18. Hayashi T., Maurice T., Su T.-P. Ca2+ signalling via σ1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J. Pharmacol. Exper. Ther., 2000, vol. 293, pp. 788-798.
19. Monnet F.P. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol. Cell., 2005, vol. 97, pp. 878-883.
20. Brailoiu G.C., Deliu E., Console-Bram L.M., Soboloff J., Abood M.E., Unterwald E.M., Brailoiu E. Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: Critical role for sigma-1 receptors. Biochem. J., 2016, vol. 473, pp. 1-5.
21. Berlansky S., Humer C., Sallinger M., Frischauf I. More than just simple interaction between STIM and Orai proteins: CRAC channel function enabled by a network of interactions with regulatory proteins. Int. J. Mol. Sci., 2021, vol. 22, p. 471, doi:https://doi.org/10.3390/ijms22010471.
22. Borisov A.E., Kozhemyakin L.A. et al. Clinical and experimental grounds of the regional and systemic administration of the thiopoetin group medicines for cirrhosis of the liver. Vestnic hirurgii im. I.I. Grekova, 2001, vol. 4, no. 2, pp. 32-38 (In Russ.).
23. Tolstoy O.A., Tsygan V.N., Klimov A.G., Stepanov A.V., Antushevich A.E. Experimental evaluation of the efficiency of the drug molixan on restoring the operation of virus-infected laboratory animals. Bull. Russ. Military Med. Acad., 2019, vol. 38, no. 1, pp. 271-277 (In Russ.).
24. Dubina M.V., Gomonova V.V., Taraskina A.E., Vasilyeva N.V., Sayganov S.A. Pathogenesis-based pre-exposure prophylaxis associated with low risk of SARS-CoV-2 infection in healthcare workers at a designated COVID-19 hospital. 2020, doi:https://doi.org/10.1101/2020.09.25.20199562.
25. Kurilova L.S., Krutetskaya Z.I., Lebedev O.E., Krutetskaya N.I., Antonov V.G. The effect of drug molixan on Ca2+ signaling processes in macrophages. Tsitologiya, 2011, vol. 53, p. 708 (In Russ.).
26. Matsumoto R.R., Bowen W.D., Tom M.A., Vo V.N., Truong D.D., De Costa B.R. Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. Eur. J. Pharmacol., 1995, vol. 280, pp. 301-310.
27. Milenina L.S., Krutetskaya Z.I., Naumova A.A., Butov S.N., Krutetskaya N.I., Antonov V.G. Arachidonic acid metabolism inhibitors attenuate Ca2+ responses induced by trifluoperazine in macrophages. Cell Tissue Biol., 2018, vol. 12, no. 4, pp. 315-322 (In Russ.).
28. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 1985, vol. 260, pp. 3440-3450.
29. Bruce J.I.E., Elliott A.C. Pharmacological evaluation of the role of cytochrome P450 in intracellular calcium signaling in rat pancreatic acinar cells. Brit. J. Physiol., 2000, vol. 131, pp. 761-771.
30. Xie Q., Zhang Y., Zhai C., Bonanno J.A. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J. Biol. Chem., 2002, vol. 277, pp. 16559-16566, doi:https://doi.org/10.1074/jbc.M109518200.
31. Milenina L.S., Krutetskaya Z.I., Antonov V.G., Krutetskaya N.I., Badulina V.I., Simonyan A.O. Neuroleptics attenuate Ca2+ responses induced by glutoxim and molixan in macrophages. Russ. J. Biol. Phys. Chem., 2022, vol. 7, no. 1, pp. 127-136. (In Russ.)
32. Harper J.L., Shin Y., Daly J.W. Loperamide: A positive modulator for store-operated calcium channels? Proc. Natl. Acad. Sci. USA., 1997, vol. 94, pp. 14912-14917.
33. Harper J.L., Daly J.W. Inhibitors of store-operated calcium channels: Imidazoles, phenothiazines, and other tricyclics. Drug Dev. Res., 1999, vol. 47, pp. 107-117.
34. Choi S.-Y., Kim Y.-H., Lee Y.-K., Kim K.-T. Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells. British J. Pharmacol., 2001, vol. 132, pp. 411-418.
35. Wang L., Zhang L., Li S., Zheng Y., Yan X., Chen M., Wang H., Putney J.W., Luo D. Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin. Sci. Rep., 2015, vol. 5, pp. 1-12.
36. Amer M.S., McKeown L. et al. Inhibition of endothelial cell Ca2+ entry and transient receptor potential channels by sigma-1 receptor ligands. Br. J. Pharmacol., 2013, vol. 168, pp. 1445-1455.
37. Gasparre G., Abate C., Carlucci R., Berardi F., Cassano G. The σ1 receptor agonist (+)-pentazocine increases store-operated Ca2+ entry in MCF7σ1 and SK-N-SH cell lines. Pharmacol. Rep., 2017, vol. 69, pp. 542-545.
38. Wu Z., Bowen W.D. Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation. Constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem., 2008, vol. 283, pp. 28198-28215.
39. Marcotti A., Fernández-Trillo J. et al. TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy. Brain, 2023, vol. 146, pp. 475-491.
40. Pergolizzi J., Varrassi G., Coleman M., Frank Breve F., Christo D.K., Christo P.J., Moussa Ch. The Sigma Enigma: A narrative review of sigma receptors. Cureus, 2023, vol. 15, no. 3, e35756, doi:https://doi.org/10.7759/cureus.35756.
41. Tsai S-Y., Hayashi T., Mori T., Su T-P. Sigma-1 receptor chaperones and diseases. Cent. Nerv. Syst. Agents Med. Chem., 2009, vol. 9, no. 3, pp. 184-189.
42. Tsai S-Y., Pokrass M.J., Klauer N.R., De Credico N.E., Su T-P. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin. Ther. Targets, 2014, vol. 18, no. 12, pp. 1461-1476.
43. Ishikawa M., Hashimoto K. The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. J. Receptor, Ligand, Channel Res., 2010, vol. 3, pp. 25-36.
44. Hayashi T. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J. Pharmacol. Sci., 2015, vol. 127, no. 1, pp. 2-5.
45. Salaciak K., Pytka K. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci. Biobehav. Rev., 2022, vol. 132, pp. 1114-1136.
46. Voronin M.V., Vakhitova Y.V., Seredenin S.B. Chaperone Sigma1R and antidepressant effect. Int. J. Mol. Sci., 2020, vol. 21, no. 19, 7088, doi:https://doi.org/10.3390/ijms21197088.
47. Ryskamp D., Wu J., Geva M., Kusko R., Grossman I., Hayden M., Bezprozvanny I. The sigma 1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol. Dis., 2017, vol. 97, pp. 46-59.
48. Ryskamp D.A., Korban S., Zhemkov V., Kraskovskaya N., Bezprozvanny I. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front. Neurosci., 2019, vol. 13, p. 862, doi:https://doi.org/10.3389/fnins.2019.00862.
49. Yang K., Wang C., Sun T. The roles of intracellular chaperone proteins, sigma receptors, in Parkinson’s disease (PD) and major depressive disorder (MDD). Front. Pharmacol., 2019, vol. 10, p. 528, doi:https://doi.org/10.3389/fphar.2019.00528.
50. Herrando-Grabulosa M., Gaja-Capdevila N., Vela J.M., Navarro X. Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br. J. Pharmacol., 2020, vol. 178, no. 6, pp. 1336-1352.
51. Lachance V., Belanger S.-M. et al. of Sigma-1R subcellular specific biological functions and role in neuroprotection. Int. J. Mol. Sci., 2023, vol. 24, p. 1971, doi:https://doi.org/10.3390/ijms24031971.
52. Malar D.S., Thitilertdecha P., Ruckvongacheep K.S., Brimson S., Tencomnao T., Brimson J.M. Targeting sigma receptors for the treatment of neurodegenerative and neurodevelopmental disorders. CNS Drugs, 2023, doi:https://doi.org/10.1007/s40263-023-01007-6.
53. Kim F.J., Maher C.M. Sigma1 pharmacology in the context of cancer. Handb. Exp. Pharmacol., 2017, vol. 244, pp. 237-308.
54. Merlos M., Burgueno J., Portillo-Salido E., Plata-Salaman C.R., Vela J.M. Pharmacological modulation of the sigma 1 receptor and the treatment of pain. Adv. Exp. Med. Biol., 2017, vol. 964, pp. 85-107.
55. Smith S.B., Wang J., Cui X., Mysona B.A., Zhao J., Bollinger K.E. Sigma 1 receptor: a novel therapeutic target in retinal disease. Prog. Retin. Eye Res., 2018, vol. 67, pp. 130-149.
56. Vela J.M. Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front. Pharmacol., 2020, vol. 11, p. 582310, doi:https://doi.org/10.3389/fphar.2020.582310.
57. Romero L., Merlos M., Vela J.M. Antinociception by sigma-1 receptor antagonists: Central and peripheral effects. Adv. Pharmacol., 2016, vol. 75, pp. 179-215.
58. Espinosa-Juarez J.V., Jaramillo-Morales O.A., Deciga-Campos M., Moreno-Rocha L.A., Lopez-Munoz F.J. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury. Drug Dev. Res., 2021, vol. 82, no. 2, pp. 267-277.
59. Entrena J.M., Cobos E.J., Nieto F.R., Cendán C.M., Gris G., Del Pozo E., Zamanillo D., Baeyens J.M. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: Studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain, 2009, vol. 143, pp. 252-261.
60. Nieto F.R., Cendan C.M. et al. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J. Pain, 2012, vol. 13, pp. 1107-1121.
61. Nieto F.R., Cendan C.M., Canizares F.J., Cubero M.A., Vela J.M., Fernandez-Segura E., Baeyens J.M. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Molecular Pain, 2014, vol. 10, p. 11.