IDENTIFICATION OF POTENTIAL-GENERATING IONS IN THE NUTRIENT SOLUTION OF BIOELECTROCHEMICAL SYSTEM
Abstract and keywords
Abstract (English):
The work considers the effect of the nutrient solution composition on the potential difference formation in the root environment. Identification of possible potential-generating ions in bioelectrochemical systems based on electactive plant and microbial interactions was carried out. The electropotential difference in the root environment was measured when growing lettuce with a nutrient solution with a double increased content of magnesium sulfate, potassium chloride and potassium dihydortophosphate. Changes in the electrical conductivity of nutrient solutions in the process of lettuce growing and the differences in the pH and concentrations of calcium, potassium, ammonium, nitrate ions in the upper and lower electrode areas of bioelectrochemical systems are analyzed. An increase in the concentration of potassium chloride and potassium dihydortophosphate in a nutrient solution led to a decrease in both biomass and the average voltage value to 221 mV and 188 mV, respectively, relatively characteristic of the control option with a classic solution of the potential difference 213 mV. The doubling of the magnesium sulfate concentration, on the contrary, caused an increase in the potential difference to an average value of 263 mV and an increase in biomass by more than 30% relative to control. Probably, magnesium sulfate plays a potential role in the formation of electogenic reactions in the root environment.

Keywords:
plant-microdal fuel cell, panoponica, carbon felt, lettuce
Text
Text (PDF): Read Download
References

1. Kuleshova T.E., Galushko A.S., Panova G.G., Volkova E.N., Apollon W., Shuang Ch., Sevda S. Bioelectrochemical systems based on the electroactivity of plants and microorganisms in the root environment (review). Agricultural Biology, 2022, vol. 57, no. 3 (In Russ.).

2. Juan A.D. Microbial Fuel Cell-Literature review. Technical evaluation of the microbial fuel cell technology in wastewater applications. Res. Gate, 2014, pp. 1-18, doi:https://doi.org/10.13140/2.4481.0569.

3. Obileke K., Onyeaka H., Meyer E.L., Nwokolo N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 2021, vol. 125, doi:https://doi.org/10.1016/j.elecom.2021.107003.

4. Pant D., Van Bogaert G., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 2010, vol. 101, no. 6, doi:https://doi.org/10.1016/j.biortech.2009.10.017.

5. Chiranjeevi P., Yeruva D.K., Kumar A.K., Mohan S.V., Varjani S. Plant-microbial fuel cell technology. In Microbial electrochemical technology. Elsevier, 2019, doi:https://doi.org/10.1016/B978-0-444-64052-9.00022-4.

6. Dommergues Y.R., Krupa S.V. Interactions between Non-pathogenic Soil Microorganisms and Plants. Developments in Agricultural and Managed-Forest Ecology (Book Series), Elsevier Science Ltd., Netherlands, 1978.

7. Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 2007, vol. 9, no. 21, pp. 2619-2629, doi:https://doi.org/10.1039/B703627M.

8. Mohan S.V., Mohanakrishna G., Chiranjeevi P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource technology, 2011, vol. 102, no. 14, doi:https://doi.org/10.1016/j.biortech.2011.04.033.

9. Pamintuan K.R.S., Sanchez K.M. Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radiata. IOP conference series: materials science and engineering, 2019, vol. 703, no. 1, doi:https://doi.org/10.1088/1757-899X/703/1/012037.

10. Strik D.P.B.T.B., Hamelers H.V.M., Snel J.F., Buisman C.J. Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 2008, vol. 32, no. 9, doi:https://doi.org/10.1002/er.1397.

11. Gulamhussein M., Randall D.G. Design and operation of plant microbial fuel cells using municipal sludge. J. Water Process. Eng, 2020, vol. 38, p. 101653, doi:https://doi.org/10.1016/j.jwpe.2020.101653.

12. Helder M., Strik D.P., Timmers R.A., Raes S.M., Hamelers H.V., Buisman C.J. Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass and Bioenergy, 2013, vol. 51, no. 1-7, doi:https://doi.org/10.1016/j.biombioe.2012.10.011.

13. Lu L., Xing D., Ren Z.J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource technology, 2015, vol. 195, doi:https://doi.org/10.1016/j.biortech.2015.05.098.

14. Habibul N., Hu Y., Wang Y.K., Chen W., Yu H.Q., Sheng G.P. Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environmental science & technology, 2016, vol. 50, no. 7, doi:https://doi.org/10.1021/acs.est.5b06376.

15. Arends J.B., Speeckaert J., Blondeel E., De Vrieze J., Boeckx P., Verstraete W., Rabaey K., Boon N. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 2014, vol. 98, doi:https://doi.org/10.1007/s00253-013-5328-5.

16. Maddalwar S., Nayak K.K., Kumar M., Singh L. Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresource Technology, 2021, vol. 341, doi:https://doi.org/10.1016/j.biortech.2021.125772.

17. Ahn Y., Logan B.E. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy and Fuels, 2013, vol. 27, no. 1, doi:https://doi.org/10.1021/ef3015553.

18. Wilkinson S., Klar J., Applegarth S. Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2006, vol. 18, no. 19-20, doi:https://doi.org/10.1002/elan.200603621.

19. Helder M., Strik D.P., Hamelers H.V., Buisman C.J. The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnology for biofuels, 2012, vol. 5, no. 1, doi:https://doi.org/10.1186/1754-6834-5-70.

20. Kuleshova T.E., Zhelnacheva P.V., Gasieva Z.A., Galushko A.S., Panova G.G. Dependence of the bioelectric potential in the root environment on the form of nitrogen in the nutrient solution. Russian Journal of Biological Physics and Chemistry, 2022, vol. 7, no. 4 (In Russ.).

21. Panova G.G., Udalova O.R., Kanash E.V., Galushko A.S., Kochetov A.A., Priyatkin N.S., Arkhipov M.V. Chernousov I.N. Fundamentals of Physical Modeling of “Ideal” Agroecosystems. Technical Physics, 2020, vol. 65, no. 10 (In Russ.).

22. Kuleshova T.E., Bushlyakova A.V., Gall N.R. Noninvasive measurement of bioelectric potentials of plants. Technical Physics Letters, vol. 45, no. 3 (In Russ.).

23. Chesnokov V.A., Bazyrina E.N., Bushueva T.M. Vyrashchivanie rastenij bez pochvy. Izd. LGU, 1960 (In Russ.).


Login or Create
* Forgot password?