Sevastopol State University
Sevastopol, Sevastopol, Russian Federation
The MN12SX/6-31++G(d,p)/SMD theory level exactly reproduced both positions of the main maximum and short-wavelength shoulder of OX750 absorption in an aqueous solution. The optimal functional for calculating the vibronic absorption spectra of different oxazine dyes in an aqueous solution was discussed based on the author’s present and previous studies. The absorption spectrum shoulder is caused by the vibronic transition. The vibrations involved in vibronic transitions correspond to large-scale molecular movements, are low-frequency, and very weak compared to the others. However, excitation significantly influences the vibrations including the most intensive ones. Photoinduced charge redistribution is local and there is no charge transfer over the dye molecule as a whole. Aliphatic hydrogen atoms prevent water molecules from accessing the N24 nitrogen atom. Considering H-bonded "solute-solvent" interactions by three water molecules led to a redshift of the entire spectrum by ≈15 nm. A strengthening of H-bonds with water molecules upon OX750 excitation was found, which explains this bathochromic effect. The intensity of low-frequency vibrations (including those involved in vibronic transitions) increases with the addition of bound water molecules, especially in an excited state. The vibration of the N-H bond of the imino group is strengthened (especially in an excited state) due to water molecule binding. Noticeable polarization of one water molecule bounded was revealed upon dye excitation. The vibronic model was also applied to calculate the emission spectrum of OX750 in the aqueous media.
TD-DFT/DFT, vibronic transitions, aqueous solution, oxazine 750, absorption spectrum, emission spectrum
1. Eilenberger D.J., Isaacs E.D., AumillerG.D. Near infrared, tunable, oxazine 750 perchlorate, synchronously-pumped picosecond ring dye laser. Optics Commun., 1983, vol. 44, pp. 350-352.
2. Scheps R. Near-IR Dye Laser fur Diode-Pumped Operation, IEEE J. Quantum Electronics, 1995, vol. 31, pp. 126-134.
3. Bos F. Optimization of spectral coverage in an eight-cell oscillator-amplifier dye laser pumped at 308 nm. Appl. Optics, 1981, vol. 20, pp. 3553-3556.
4. Fehrenbach G.W., Gruntz K.J., Ulbrich R.G. Subpicosecond light pulses from a synchronously modelocked dye laser with composite gain and absorber medium. Appl. Phys. Lett., 1978, vol. 33, pp. 159-160.; DOI: https://doi.org/10.1063/1.90291; EDN: https://elibrary.ru/NRGWEH
5. Kaneta T., Imasaka T. Indirect Detection of Aromatic Hydrocarbons by Semiconductor Laser Fluorometry in Micellar Electrokinetic Chromatography. Anal. Chem., 1995 vol. 67, pp. 829-834.
6. Shapiro H.M., Stephens S. Flow Cytometry of DNA Content Using Oxazine 750 or Related Laser Dyes With 633 nm Excitation. Cytometry, 1986, vol. 7, pp. 107-110.
7. Blyler L.L., Lieberman R.A., Cohen L.G., Ferrara J.A., Macchesney J.B. Optical Fiber Chemical Sensors Utilizing Dye-Doped Silicone Polymer Claddings. Polym. Eng. Sci., 1989, vol. 29, pp. 1215-1218.
8. Sathy P., Penzkofer A. Absorption and fluorescence spectroscopic analysis of rhodamine 6G and oxazine 750 in porous sol-gel glasses. J. Photochem. Photobiol. A, 1997, vol. 109, pp. 53-57.
9. Ammer F., Penzkofer A., Weidner P. Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths. Chem. Phys., 1995, vol. 192, pp. 325-331.; EDN: https://elibrary.ru/APHLLF
10. Wark M., Ganschow M., Schulz-Ekloff G., Woehrle D. Incorporation of organic dye molecules in nanoporous crystals for the development of hexagonal solid state microlasers. Proc. SPIE, 2001, vol. 4456, pp. 57-67.
11. Weidner P., Penzkofer A. Picosecond transient spectral hole-burning studies on oxazine 750 in a silicate xerogel. Chem. Phys., 1995, vol. 191, pp. 303-319.; EDN: https://elibrary.ru/APHMPZ
12. Zhou P., Song P., Liu J.-Y., Shi Y., Han K., He G. Rotational Reorientation Dynamics of Oxazine 750 in Polar Solvents. J. Phys. Chem. A, 2008, vol. 112, pp. 3646-3655.
13. Zhao G.-J., Liu J.-Y., Zhou L.-C., Han K.-L. Site-Selective Photoinduced Electron Transfer from Alcoholic Solvents to the Chromophore Facilitated by Hydrogen Bonding: A New Fluorescence Quenching Mechanism. J. Phys. Chem. B, 2007, vol. 111, pp. 8940-8945.; DOI: https://doi.org/10.1021/jp0734530; EDN: https://elibrary.ru/XQKODD
14. Zhou L.-C., Shi Y., Liu J.-Y. Han& K.-L. The effect of hydrogen-bond in alcoholic solvent on the solvation ultrafast dynamics of oxazine 750 dye. Chin. Sci. Bull, 2008, vol. 53, pp. 1951-1954.
15. Milanchian K., Tajalli H., Ghanadzadeh A., Zakerhamidi M.S. Nonlinear optical properties of two oxazine dyes in aqueous solution and polyacrylamide hydrogel using single beam Z-scan. Opt. Mater, 2009, vol. 32, pp. 12-17.
16. Zakerhamidi M.S., Golghasemi Sorkhabi S. Solvent effects on the molecular resonance structures and photo-physical properties of a group of oxazine dyes. J. Luminesc., 2015, vol. 157, pp. 220-228.
17. Zakerhamidi M.S., Tajalli H., Ghanadzadeh A., Milanchian K., Hosseini Nasab N., Moghadam M. Effect of polyacrylamide hydrophilic gel composition on photo-physical behavior of Oxazine 750. Spectrochim. Acta A, 2010, vol. 77, pp. 164-169.
18. Ghanadzadeh A., Tajalli H., Zirack P., Shirdel J. On the photo-physical behavior and electro-optical effect of oxazine dyes in anisotropic host. Spectrochim. Acta A, 2004, vol. 60, pp. 2925-2932.
19. Rauf M.A., Zaman M.Z. Spectral properties of oxazines in various solvents. Spectrochim. Acta A, 1987, vol. 43, p. 1171.
20. Beuerman E., Makarov N., Drobizhev M., Rebane A. Justification of two-level approximation for description of two-photon absorption in oxazine dyes. Proc. SPIE, 2010, vol.7599, pp. 75-99.
21. Yamaguchi S., Tahara T. Determining electronic spectra at interfaces by electronic sum frequency generation: One- and two-photon double resonant oxazine 750 at the air/water interface. J. Chem. Phys., 2006, vol. 125, p. 194711.
22. Dong L.-Q., Niu K., Cong S.-L. Theoretical Analysis of Femtosecond Fluorescence Depletion Spectra and Vibrational Relaxations of Dye Oxazine 750 and Rhodamine 700 Molecules in Acetone Solution. Int. J. Quantum Chem., 2007, vol. 107, pp. 1205-1214.
23. Zhao G.-J., Han K.-L. Hydrogen Bonding in the Electronic Excited State. Acc. Chem. Res., 2012, vol. 45, pp. 404-413.; DOI: https://doi.org/10.1021/ar200135h; EDN: https://elibrary.ru/YDSIAL
24. Jacquemin D., Brymond E., Planchat A., Ciofini I., Adamo C. TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J. Chem. Theory Comput., 2011, vol. 7, pp. 1882-1892.
25. Lopez G.V., Chang C.-H., Johnson P.M., Hall G.E., Sears T.J., Markiewicz B., Milan M., Teslja A. What Is the Best DFT Functional for Vibronic Calculations? A Comparison of the Calculated Vibronic Structure of the S1−S0 Transition of Phenylacetylene with Cavity Ringdown Band Intensities. J. Phys. Chem. A, 2012, vol. 116, pp. 6750-6758.
26. Charaf-Eddin A., Planchat A., Mennucci B., Adamo C., Jacquemin D. Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. J. Chem. Theory Comput., 2013, vol. 9, pp. 2749-2760.
27. Jacquemin D., Bremond E., Ciofini I., Adamo C. Impact of Vibronic Couplings on Perceived Colors: Two Anthraquinones as a Working Example. J. Phys. Chem. Lett., 2012, vol. 3, pp. 468-471.
28. Kostjukova L.O., Leontieva S.V., Kostjukov V.V. The Vibronic Absorption Spectrum and Electronic States of Nile Red in Aqueous Solution. ChemistrySelect, 2021, vol. 6, pp. 1297-1304.; DOI: https://doi.org/10.1002/slct.202004763; EDN: https://elibrary.ru/QIGVNX
29. Yaroshenko N.S., Kostjukova L.O., Kostjukov V.V. Excited states of six oxazine 1 conformers in aqueous solution: TD-DFT/DFT study. J. Mol. Liquids, 2021, vol. 341, p. 117456.
30. Kostjukov V.V. Photoexcitation of brilliant cresyl blue dye in aqueous solution: TD-DFT study. Mol. Phys., 2021, pp. 66-47.
31. Kostjukov V.V. Photoexcitation of oxazine 170 dye in aqueous solution: TD-DFT study. J. Mol. Model, 2021, vol. 27, p. 311.; DOI: https://doi.org/10.1007/s00894-021-04931-w; EDN: https://elibrary.ru/YBRBSB
32. Kostjukov V.V. Photoexcitation of oxazine 4 dye in aqueous solution: TD-DFT study. Chem. Phys., 2022, vol. 553, p. 111399.
33. Kostjukov V.V. Photoexcitation of cresyl violet dye in aqueous solution: TD-DFT study. Theor. Chem. Acc., 2021, vol. 140, p. 155.
34. Condon E.U. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev., 1928, vol. 32, pp. 858-872.
35. Improta R., Barone V., Scalmani G., Frisch M.J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys., 2006, vol. 125, p. 54103.; DOI: https://doi.org/10.1063/1.2222364; EDN: https://elibrary.ru/MIKOUF
36. Alia J.D., Flack J.A. Unspecified verticality of Franck-Condon transitions, absorption and emission spectra of cyanine dyes, and a classically inspired approximation. RSC Adv., 2020, vol. 10, pp. 43153-43167.
37. Scalmani G., Frisch M.J., Mennucci B., Tomasi J., Cammi R., Barone V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 2006, vol. 124, p. 94107.; DOI: https://doi.org/10.1063/1.2173258; EDN: https://elibrary.ru/LXAAPZ
38. Kasha M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc., 1950, vol. 9, pp. 14-19.
39. Tomasi J., Mennucci B., Cammi R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, vol. 105, pp. 2999-3093.; DOI: https://doi.org/10.1021/cr9904009; EDN: https://elibrary.ru/PBTPNR
40. Fleming S., Mills A., Tuttle T. Predicting the UV-vis spectra of oxazine dyes, Beilstein J. Org. Chem., 2011, vol. 7, pp. 432-441.
41. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, vol. 113, pp. 6378-6396.; DOI: https://doi.org/10.1021/jp810292n; EDN: https://elibrary.ru/MMAUZF
42. Frisch M.J. et al. Gaussian 16, Revision C.01, Inc., Wallingford CT, 2016.
43. Baiardi A., Bloino J., Barone V. General Time Dependent Approach to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and Duschinsky Effects. J. Chem. Theory Comput., 2013, vol. 9, pp. 4097-4115.
44. Dennington R., Keith T.A., Millam J.M. GaussView Version 6.1, Semichem Inc., Shawnee Mission KS, 2016.
45. Dierksen M., Grimme S. The Vibronic Structure of Electronic Absorption Spectra of Large Molecules: A Time-Dependent Density Functional Study on the Influence of “Exact” Hartree-Fock Exchange. J. Phys. Chem. A, 2004, vol. 108, pp. 10225-10237.
46. Kantchev E.A.B., Norsten T.B., Sullivan M.B. Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org. Biomol. Chem., 2012, vol. 10, pp. 6682-6692.
47. Escudero D., Laurent A.D., Jacquemin D. Time-dependent density functional theory: A tool to explore excited states. Springer Int. Publish. Switzerland, 2017, pp. 927-961.
48. Iikura H., Tsuneda T., Yanai T., Hirao K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys., 2001, vol. 115, pp. 3540-3544.
49. Peverati R., Truhlar D.G. Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem., 2012, vol. 14, pp. 16187-16191.
50. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicator. Chem. Rev., 1994, vol. 94, pp. 2319-2358.; DOI: https://doi.org/10.1021/cr00032a005; EDN: https://elibrary.ru/OVXWSL
51. Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 1984, vol. 5, pp. 129-145.
52. Hessz D., Hegely B., Kallay M., Vidoczy T., Kubinyi M. Solvation and Protonation of Coumarin 102 in Aqueous Media: A Fluorescence Spectroscopic and Theoretical Study. J. Phys. Chem. A, 2014, vol. 118, pp. 5238-5247.
53. Lakowicz J.R., Masters B.R. Principles of Fluorescence Spectroscopy. Optics, 2008, vol. 13.2, p. 29901.
54. Marciniak H., Hristova S., Deneva V., Kamounah F.S., Hansen P.E., Lochbrunner S., Antonov L. Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo [h] quinolones. Phys. Chem., 2017, vol. 19, pp. 26621-26629.
55. Greiner J., Sundholm D. Calculation of vibrationally resolved absorption and fluorescence spectra of the rylenes. Phys. Chem., 2020, vol. 22, pp. 2379-2385.