N.V. Sklifosovsky Institute of Emergency Medicine
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
The article considers one of the most important factors allowing to determine the possibility of wide and safe use of graphene nanoobjects in modern biomedicine - this is the biocompatibility factor, namely, the interaction of a graphene-containing substance with a given part of the body, which is realized at different scales and at different levels of organization of living matter. Graphene and its derivatives have shown exceptional properties and potential for various applications. While graphene derivatives as graphene-oxide (GO), reduced graphene-oxide (rGO), few-layers graphene (FLG), and multi-layers graphene (MLG) exhibit similar properties to graphene, more research is needed to address scalability and cost-effectiveness for practical applications. In tissue engineering, graphene-based materials have shown promise in scaffolds, biosensors, and drug delivery systems, but optimizing biocompatibility and functionalization strategies are crucial for safe and effective use. This work is a try to better understanding the complex interactions between graphene and biological systems, including cells, tissues, and organs, which is necessary for future research and expanding the use of graphene in biomedical applications.
graphene, biocompatibility, functionalization, biomedical applications
1. Zhang Y.I., Zhang L., Zhou C. Graphene and Related Applications. Acc. Chem. Res., 2013, vol. 46, pp. 2329-2339.; DOI: https://doi.org/10.1021/ar300203n; EDN: https://elibrary.ru/SQZHYT
2. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339, doi:https://doi.org/10.1021/ja01539a017.
3. Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, vol. 4, no. 4, pp. 217-224, doi:https://doi.org/10.1038/nnano.2009.58.; ; EDN: https://elibrary.ru/XSQEAD
4. Lu X., Yu M., Huang H., Ruoff R.S. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, vol. 10, no. 3, pp. 269-272, doi:https://doi.org/10.1088/0957-4484/10/3/308.; EDN: https://elibrary.ru/AYNIEP
5. Schwierz F. Graphene transistors. Nat. Nanotechnol., 2010, vol. 5, no. 7, pp. 487-496, doi:https://doi.org/10.1038/nnano.2010.89.; ; EDN: https://elibrary.ru/MZWGSB
6. Hu W. et al. Graphene-based antibacterial paper. ACS Nano, 2010, vol. 4, no. 7, pp. 4317-4323, doi:https://doi.org/10.1021/nn101097v.; ; EDN: https://elibrary.ru/MZWHPX
7. Lin L. et al. Size-dependent effects of suspended graphene oxide nanoparticles on the cellular fate of mouse neural stem cells. Int. J. Nanomedicine, 2020, vol. 15, pp. 1421-1435, doi:https://doi.org/10.2147/IJN.S225722.
8. Rasanani A.H., Kaffashi B., Seyfi J., Ahmadi S. Probing the effect of graphene surface chemistry on compatibility, crystallinity, and viscoelastic response of polylactic acid/polyvinylidene fluoride blends. Mater. Today Commun., 2022, vol. 30, no. January, p. 103188, doi:https://doi.org/10.1016/j.mtcomm.2022.103188.; ; EDN: https://elibrary.ru/ILPSBD
9. Sontakke A.D., Tiwari S., Purkait M.K. A comprehensive review on graphene oxide-based nanocarriers: Synthesis, functionalization and biomedical applications. FlatChem, 2023, vol. 38, no. February, p. 100484, doi:https://doi.org/10.1016/j.flatc.2023.100484.; ; EDN: https://elibrary.ru/DTLAIB
10. Rahman M. et al. Chapter 13 - Functionalized graphene-based nanomaterials for drug delivery and biomedical applications in cancer chemotherapy. Nanoparticles in Pharmacotherapy, 2019, pp. 429-460, doi: https://doi.org/10.1016/B978-0-12-816504-1.00011-9.
11. Samantara A.K., Acharya C., Satpathy D., Panda C.R., Bhaskara P.K., Sasmal A. Chapter 13 - Functionalized graphene: An unique platform for biomedical application. Fullerens, Graphenes and Nanotubes, 2018, pp. 545-584, doi:https://doi.org/10.1016/B978-0-12-813691-1.00013-0.; ; EDN: https://elibrary.ru/WWYVKD
12. Maktedar S.S., Mehetre S.S., Avashthi G., Singh M. In situ sonochemical reduction and direct functionalization of graphene oxide: A robust approach with thermal and biomedical applications. Ultrason. Sonochem., 2017, vol. 34, pp. 67-77, doi:https://doi.org/10.1016/j.ultsonch.2016.05.015.; ; EDN: https://elibrary.ru/WUTRNX
13. Luo Y. et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 11, pp. 6331-6339, doi:https://doi.org/10.1021/acsami.5b00862.
14. Shanmugam D.K. et al. Efficacy of Graphene-Based Nanocomposite Gels as a Promising Wound Healing Biomaterial. Gels, 2022, vol. 9, no. 1, p. 22, doi:https://doi.org/10.3390/gels9010022.; ; EDN: https://elibrary.ru/NECALR
15. Qu G. et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano, 2013, vol. 7, no. 7, pp. 5732-5745, doi:https://doi.org/10.1021/nn402330b.
16. Jasim D.A. et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J. Control. Release, 2021, vol. 338, no. August, pp. 330-340, doi:https://doi.org/10.1016/j.jconrel.2021.08.028.; ; EDN: https://elibrary.ru/MHURAU
17. Wu J., Yang R., Zhang L., Fan Z., Liu S. Cytotoxicity effect of graphene oxide on human MDA-MB-231 cells. Toxicol. Mech. Methods, 2015, vol. 25, no. 4, pp. 312-319, doi:https://doi.org/10.3109/15376516.2015.1031415.; ; EDN: https://elibrary.ru/VGJYXL
18. Tu Z. et al. Combination of Surface Charge and Size Controls the Cellular Uptake of Functionalized Graphene Sheets. Adv. Funct. Mater., 2017, vol. 27, no. 33, doi:https://doi.org/10.1002/adfm.201701837.; ; EDN: https://elibrary.ru/YFRUVJ
19. Cheng C. et al. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J. Mater. Chem. B, 2013, vol. 1, no. 3, pp. 265-275, doi:https://doi.org/10.1039/c2tb00025c.
20. Qi Z. et al. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv., 2019, vol. 9, no. 15, pp. 8315-8325, doi:https://doi.org/10.1039/c8ra10103e.
21. Devi Y.G.V., Nagendra A.H., Shenoy S.P., Chatterjee K., Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar. Drugs, 2022, vol. 20, no. 10, doi:https://doi.org/10.3390/md20100589.; ; EDN: https://elibrary.ru/AGSVJC
22. Priyadarsini S., Mohanty S., Mukherjee S., Basu S., Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem., 2018, vol. 8, no. 2, pp. 123-137, doi:https://doi.org/10.1007/s40097-018-0265-6.
23. Feng R., Yu F., Xu J., Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials, 2020, vol. 266, no. October, p. 120469, doi:https://doi.org/10.1016/j.biomaterials.2020.120469.; ; EDN: https://elibrary.ru/VXEQNS
24. Yang K., Zhang S., Zhang G., Sun X., Lee S.T., Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, vol. 10, no. 9, pp. 3318-3323, doi:https://doi.org/10.1021/nl100996u.
25. Liu Y. et al. Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. J. Biomed. Nanotechnol., 2016, vol. 12, no. 6, pp. 1270-1284, doi:https://doi.org/10.1166/jbn.2016.2254.; ; EDN: https://elibrary.ru/WTZCLF
26. Pourmadadi M., Shayeh J.S., Arjmand S., Omidi M., Fatemi F. An electrochemical sandwich immunosensor of vascular endothelial growth factor based on reduced graphene oxide/gold nanoparticle composites. Microchem. J., 2020, vol. 159, no. June, p. 105476, doi:https://doi.org/10.1016/j.microc.2020.105476.
27. Zhu S., Liu Y., Gu Z., Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Adv. Drug Deliv. Rev., 2022, vol. 188, p. 114420, doi:https://doi.org/10.1016/j.addr.2022.114420.; ; EDN: https://elibrary.ru/KJKJEP
28. Machova I. et al. The bio-chemically selective interaction of hydrogenated and oxidized ultra-small nanodiamonds with proteins and cells. Carbon N.Y., 2020, vol. 162, pp. 650-661, doi:https://doi.org/10.1016/j.carbon.2020.02.061.; ; EDN: https://elibrary.ru/TJSADB
29. Cosnier S. et al. Biocompatible Graphene Oxide-Based Glucose Biosensors. J. Biosens. Bioelectron, 2010, vol. 26, no. 9, p. 4785, doi:https://doi.org/10.1021/la100886x.; ; EDN: https://elibrary.ru/OBHJAN
30. Cellot G. et al. Bonding of Neuropeptide Y on Graphene Oxide for Drug Delivery Applications to the Central Nervous System. ACS Appl. Nano Mater., 2022, vol. 5, no. 12, pp. 17640-17651, doi:https://doi.org/10.1021/acsanm.2c03409.; ; EDN: https://elibrary.ru/WNNAKU
31. Rhazouani A. et al. Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of in Vitro and in Vivo Studies. Biomed Res. Int., 2021, vol. 2021, doi:https://doi.org/10.1155/2021/5518999.; ; EDN: https://elibrary.ru/ZZMPQV
32. Dvir T., Timko B.P., Kohane D.S., Langer R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol., 2011, vol. 6, no. 1, pp. 13-22, doi:https://doi.org/10.1038/nnano.2010.246.; ; EDN: https://elibrary.ru/OBBVTD
33. Raslan A., Saenz del Burgo L., Ciriza J., Luis Pedraz J. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int. J. Pharm., 2020, vol. 580, no. December 2019, p. 119226, doi:https://doi.org/10.1016/j.ijpharm.2020.119226.
34. Kurantowicz N. et al. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale Res. Lett., 2015, vol. 10, no. 1, doi:https://doi.org/10.1186/s11671-015-1107-9.; ; EDN: https://elibrary.ru/VFNRXZ
35. Novoselov K.S., Fal′ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature, 2012, vol. 490, no. 7419, pp. 192-200, doi:https://doi.org/10.1038/nature11458.; ; EDN: https://elibrary.ru/RHBQZX
36. Ji H., Sun H., Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev., 2016, vol. 105, pp. 176-189, doi:https://doi.org/10.1016/j.addr.2016.04.009.; ; EDN: https://elibrary.ru/XUMHTX
37. Bai R. G. Husseini G.A. Chapter 11 - Graphene-based drug delivery systems. Biomimetic Nanoengineered Materials for Advanced Drug Delivery, 2019, pp. 149-168, doi:https://doi.org/10.1016/B978-0-12-814944-7.00011-4.
38. Wu J. et al. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology, 2012, vol. 23, no. 35, doi:https://doi.org/10.1088/0957-4484/23/35/355101.; ; EDN: https://elibrary.ru/RNRXWH
39. Costa F.J.P. et al. Development of Thiol-Maleimide hydrogels incorporating graphene-based nanomaterials for cancer chemo-photothermal therapy. Int. J. Pharm., 2023, vol. 635, no. February, doi:https://doi.org/10.1016/j.ijpharm.2023.122713.; ; EDN: https://elibrary.ru/WMOZDR
40. Kuila T., Bose S., Khanra P., Mishra A.K., Kim N.H., Lee J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron., 2011, vol. 26, no. 12, pp. 4637-4648, doi:https://doi.org/10.1016/j.bios.2011.05.039.; ; EDN: https://elibrary.ru/OLZNYR
41. Park J. et al. Graphene oxide flakes as a cellular adhesive: Prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano, 2015, vol. 9, no. 5, pp. 4987-4999, doi:https://doi.org/10.1021/nn507149w.