Wuhu, Anhui, Китайская Народная Республика
Wuhu, Anhui, Россия
Wuhu, Anhui, Россия
Wuhu, Anhui, Китайская Народная Республика
УДК 621.385.632.1 с замедляющей системой без поперечного магнитного поля
A continuous wave backward wave oscillator is studied in this paper. The design of the slowing wave system is completed through theoretical calculation and numerical simulation, and the slowing wave system is manufactured through precision machining. In order to improve the output power of the electron tube, a high resistance diode electron gun is used to produce a sheet electron beam with high emission current density. The test shows that the developed BWO can work in the frequency range of 250 ~ 310 GHz, and the output power is 20 mW to 42 mW.
backward wave oscillator (BWO), terahertz, slowing wave system, sheet electron beam
1. K. Iwaszczuk, H. Heiselberg, and P. U. Jepsen, “Terahertz radar cross section measurements,” Optics Express, vol. 18, no. 25, p. 26399, Dec. 2010, doi:https://doi.org/10.1364/oe.18.026399.
2. J. A. Spies et al., “Terahertz Spectroscopy of Emerging Materials,” The Journal of Physical Chemistry C, vol. 124, no. 41, pp. 22335-22346, Sep. 2020, doi:https://doi.org/10.1021/acs.jpcc.0c06344.
3. I. Akyildiz, J. Jornet, and C. Han, “TeraNets: ultra-broadband communication networks in the terahertz band,” IEEE Wireless Communications, vol. 21, no. 4, pp. 130-135, Aug. 2014, doi:https://doi.org/10.1109/mwc.2014.6882305.
4. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nature Photonics, vol. 4, no. 9, pp. 627-631, Jul. 2010, doi:https://doi.org/10.1038/nphoton.2010.165.
5. Aiping Gong, Yating Qiu, Xiaowan Chen, Zhenyu Zhao, Linzhong Xia, and Yongni Shao, “Biomedical applications of terahertz technology,” Applied Spectroscopy Reviews, vol. 55, pp. 418-438, 2019.
6. M. Y. Glyavin, T. Idehara, and S. P. Sabchevski, “Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Tech-nologies,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 788-797, Sep. 2015, doi:https://doi.org/10.1109/tthz.2015.2442836.
7. B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Measurement Science and Technology, vol. 21, no. 5, p. 054017, Mar. 2010, doi:https://doi.org/10.1088/0957-0233/21/5/054017.
8. Y.-M. Shin, A. Baig, L. R. Barnett, W.-C. Tsai, and N. C. Luhmann, “System Design Analy-sis of a 0.22-THz Sheet-Beam Traveling-Wave Tube Amplifier,” IEEE Transactions on Elec-tron Devices, vol. 59, no. 1, pp. 234-240, Jan. 2012, doi:https://doi.org/10.1109/ted.2011.2173575.
9. Hongzhu Xi, Jianguo Wang, Zhaochang He, Gang Zhu, Yue Wang, Hao Wang, Zaigao Chen, Rong Li, and Luwei Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Scientific Reports, vol. 8, no. 348, 2018, doi:https://doi.org/10.1038/s41598-017-18740-w.
10. L. Bi et al., “Tractable Resonant Circuit With Two Nonuniform Beams for a High-Power 0.22-THz Extended Interaction Oscillator,” IEEE Electron Device Letters, vol. 42, no. 6, pp. 931-934, Jun. 2021, doi:https://doi.org/10.1109/led.2021.3072848.
11. Renjie Li, Cunjun Ruan, Ayesha Kosar Fahad, Chenyu Zhang, and Shasha Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Scientific Reports, vol. 9, no. 4584, 2019, doi:https://doi.org/10.1038/s41598-019-41087-3.
12. Y. Wang J. Wang Z. Chen G. Cheng and P. Wang, “Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices,” Com-put. Phys. Commun., vol. 205, pp. 1-12, Aug. 2016.