г. Москва и Московская область, Россия
Российский университет дружбы народов
ООО «РТМ Диагностика»
Москва, г. Москва и Московская область, Россия
Санкт-Петербург, г. Санкт-Петербург и Ленинградская область, Россия
Санкт-Петербург, г. Санкт-Петербург и Ленинградская область, Россия
Санкт-Петербург, г. Санкт-Петербург и Ленинградская область, Россия
Настоящая работа посвящена решению фундаментальной научной задачи — раз-работке научных основ и методологии создания прототипа аппаратно-программного комплекса неинвазивного выявления и локализации патологий жи-вых тканей человека на основе динамического радиотермокартирования, предна-значенного для ранней диагностики онкологических заболеваний и мониторинга процессов их лечения, а также может использоваться в персонализированной медицины. Использование современного программного обеспечения и технологии монолитных интегральных схем СВЧ позволят применить новые подходы к раз-работке принципиально нового устройства — многоканального многочастотного радиотермографа на основе технологии МИС.
радиотермометрия, радиотермограф, многоканальность, многочастотность.
1. Carr K. L. Microwave radiometry : Its importance to the detection of cancer // IEEE Trans. Microw. Theory Techn. 1989. Vol. 37, no. 12, P. 1862-1869.
2. Modern microwave thermometry for breast cancer. Journal of Molecular Imaging & Dynamics / S.Vesnin et al. 2017. URL: https://www.longdom.org/open-access/modern-microwave-thermometry-for-breast-cancer-2155-9937-1000136.pdf.
3. Passive microwave radiometry in biomedical studies / I. Goryanin et al. // Drug Discovery Today. 2020. Vol. 25(4). P. 757-763.
4. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year : Results from a prospective multicenter study // K. Toutouzas et al. // Atherosclerosis 2017. Vol. 262. P. 25-30.
5. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective / M. Drakopoulou et al. // Current Opinion in Pharmacology. 2018. Vol. 39. P. 99-104.
6. Real-time passive brain monitoring system using near-field microwave radiometry / E. Groumpas et al. // IEEE Trans. on Biomedical Engineering. 2019. Vol. 67, no.1. P. 158-165.
7. Kublanov V. S., Borisov V. I. Biophysical evaluation of microwave radiation for functional research of the human brain // Proc. IFMBE. 2017. P. 1045-1048.
8. Use of multichannel microwave radiometry for functional diagnostics of the brain / A. G. Gudkov et al. // Biomedical Engineering. 2019. Vol. 53, no.2. P. 108-111.
9. Diagnostic opportunities of noninvasive brain thermomonitoring / D.V. Cheboksarov et al. // Anesteziologiia i Reanimatologiia. 2015. Vol. 60 (1). P. 66-69.
10. Therapeutic Hypothermia Systems / O. A. Shevelev et al. // Biomed. Eng. 2021. Vol. 54. P. 397-401.
11. Microwave radiometry for noninvasive monitoring of brain temperature / D. B. Rodrigues et al. In : Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy. Springer, Cham, 2018. P. 87-127.
12. Joint microwave radiometry for inflammatory arthritis assessment / K. Laskari et al. // Rheumatology. 2020. Vol.59 (4). P. 839-844.
13. Ravi V. M., Sharma A. K., Arunachalam K. Pre-clinical testing of microwave radiometer and a pilot study on the screening inflammation of knee joints // Bioelectromagnetics. 2019. Vol. 40, no. 6. P. 402-411.
14. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms / Arunachalam K. et al. // IEEE Transactions on biomedical engineering. 2011. Vol. 58, no. 6. P. 1629-1636.
15. Jacobsen S., Klemetsen Ø., Birkelund Y. Vesicoureteral reflux in young children: a study of radiometric thermometry as detection modality using an ex vivo porcine model // Physics in Medicine & Biology. 2012. Vol. 57, no. 17. P. 5557-5573.
16. Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT / J. P. Crandall et al. // Journal of Nuclear Medicine. 2018. Vol. 59, no. 8. P. 1243-1248.
17. Andreev V. V., Barantsevich E. R. Treatment of acute and chronic pain syndromes in lumbosacral radiculopathy // Effect. Pharmacother. 2018. Vol. 4. P. 42-49.
18. Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine / A. V. Tarakanov et al. // European Journal of Molecular & Clinical Medicine. 2020. Vol. 7(1). P. 21-26.
19. Microwave Radiometry (MWR) temperature measurement is related to symptom severity in patients with Low Back Pain (LBP) / A. V. Tarakanov et al. // Journal of Bodywork and Movement Therapies. 2021. Vol. 26. P. 548-552.
20. Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan / B. Osmonov et al. // Diagnostics. 2021. No. 11(2). P. 259.
21. Momenroodaki P. Noninvasive internal body temperature tracking with near-field microwave radiometry // IEEE Trans. on Microwave Theory and Techniques. 2018. Vol. 66 (5). P. 2535-2545.
22. Stable microwave radiometry system for long term monitoring of deep tissue temperature / P. R. Stauffer et al. // Proc. SPIE 2013, P. 8584.
23. Wireless system for continuous monitoring of core body temperature / W. Haines et al. // Proc. IEEE MTT-S International Microwave Symposium (IMS). June 4-9, 2017, Honololu, USA. 2017. P. 541-543.
24. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements // IEEE Communications Magazine. 2014. Vol. 52 (10). P. 118-125.
25. Momenroodaki P., Haines W., Popovic Z. Non-invasive microwave thermometry of multi-layer human tissues. In Proc. IEEE MTT-S International Microwave Symposium (IMS), June 4-9, 2017. Honololu, USA. P. 1387-1390.
26. Ravi V. M., Arunachalam, K. A low noise stable radiometer front-end for passive microwave tissue thermometry // Journal of Electromagnetic Waves and Applications, Vol. 33(6). P. 743-758.
27. Maccarini P.F. et al. A novel compact microwave radiometric sensor to noninvasively track deep tissue thermal profiles. In 2015 European Microwave Conference (EuMC). 2015, pp. 690-693.
28. Functional link between distal vasodilation and sleep-onset latency? / K. Kräuchi et al. // Amer. J. Physiol. - Reg., Integr. Comparative Physiol. 2000. Vol. 278, no. 3, P. R741-R748.
29. Effects of light treatment on core body temperature in seasonal affective disorder / N. E. Rosenthal et al. // Biol. Psychiatry. 1990. Vol. 27, no. 1. P. 39-50.
30. Disruption of circadian rhythms accelerates development of diabetes through pancreatic betacell loss and dysfunction / J. E. Gale et al. // J. Biol. Rhythms. 2011. Vol. 26, no. 5. P. 423-433.
31. Circadian rhythms govern cardiac repolarization and arrhythmogenesis / D. Jeyaraj et al. // Nature. 2012. Vol. 483, no. 7387. P. 96-99.
32. Detection of extravasation of antineoplastic drugs by microwave radiometry / J. Shaeffer et al. // Cancer Lett. 1986. Vol. 31, no. 3. P. 285-291.
33. Jacobsen S., Stauffer P. R. Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus // IEEE Trans. Microw. Theory Techn. 2002. Vol. 50, no. 7. P. 1737-1746.
34. Non-invasive temperature profiling using multi-frequency microwave radiometry in the presence of water-filled bolus / S. Mizushina et al. // IEICE Trans. Electron. 1991. Vol. 74, no. 5. P. 1293-1302.
35. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling / J. W. Hand et al. // Phys. Med. Biol. 2001. Vol. 46, no. 7. P. 1885-1903.
36. Moran D. S., Mendal L. Core temperature measurement // Sports Med. 2002. Vol. 32, no. 14. P. 879-885.
37. Byrne C., Lim C. L. The ingestible telemetric body core temperature sensor : A review of validity and exercise applications // Brit. J. Sports Med. 2007. Vol. 41, no. 3. P. 126-133.
38. The effect of cool water ingestion on gastrointestinal pill temperature / D. M. Wilkinson et al. // Med. Sci. Sports Exercise. 2008. Vol. 40, no. 3. P. 523-528.
39. Accurate temperature imaging based on intermolecular coherences in magnetic resonance / G. Galiana et al. // Science. 2008. Vol. 322, no. 5900. P. 421-424.
40. Kraus J. D. Radio Astronomy, 2nd ed. Cygnus-Quasar Books, 1976, P. 1-3, 20-23, 66.
41. Ulaby F. T., Moore R. K., Fung A. K. Microwave Remote Sensing : Active and Passive, Vol. 1 : Microwave Remote Sensing Fundamentals and Radiometry. Artech House, 1981, P. 1-3, 20-24, 93-94, 112, 122-123.
42. Klemetsen O. Design and evaluation of a medical microwave radiometer for observing temperature gradients subcutaneously in the human body : PhD thesis. University of Tromso, faculty of science department of physics and technology. Tromso, 2011. 92 p.
43. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature / M. Sedankin et al. // Восточно-Европейский журнал передовых технологий. 2018. Т. 3(5). С. 26-36.
44. Chupina D. N., Sedankin M. K., Vesnin S. G. Application of modern technologies of mathematical simulation for the development of medical equipment. In 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT). Р. 1-5.
45. Gawande R., Bradley R. Low-Noise Amplifier at 2.45 GHz // Microwave Magazine. 2009. Vol 11. P. 122-126.
46. A ultrawideband 3-10 GHz low-noise amplifier MMIC using inductive-series peaking technique / Chia-Song Wu et al. // Electric Information and Control Engineering IEEE. 2020. Vol. 2. P. 5667-5670.
47. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation / V. Tikhomirov et al. // Semiconductors. 2016. Vol. 50, no. 2. P. 244-248.
48. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation / V G. Tikhomirov et al. // Journal of Physics Conference Series. 2019. Vol. 1410. Iss. 1. P. 012191.