The recently published most complete set of thermodynamical data on self- and hetero-complexation of aromatic molecules measured under comparable conditions of experiment was analysed with an aim of getting insight into contribution of various entropic factors to π-stacking in aqueous solution. It was found that the experimental entropy change on π-stacking is determined by counterbalancing effect of two principal factors, viz . the hydrophobic interaction (positive contribution) and the loss of degrees of freedom (negative contribution), modulated by electrostatic contribution. The mixing entropy contribution originating from the overall ordering of system due to π-stacking complexation is zero.
self-assembly, hetero-complexation, mixing entropy, entropic contribution
1. Waters M.L. Aromatic interactions in model systems. Curr. Opin. Chem. Biol., 2002, vol. 6, pp. 736-741.
2. Meyer E.A., Castellano R.K., Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed., 2003, vol. 42, pp. 1210-1250.
3. Schneider H.-J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed., 2009, vol. 48, pp. 3924-3977.
4. Cockroft S.L., Hunter C.A. Chemical double-mutant cycles: dissecting non-covalent interactions. Chem. Soc. Rev., 2007, vol. 36, pp. 172-188.
5. Buisine E., de Villiers K., Egan T.G., Biot C. Solvent-induced effects: self-association of positively charged π systems. J. Am. Chem. Soc., 2006, vol. 128, pp. 12122-12128.
6. Kostjukov V.V., Khomytova N.M., Hernandez Santiago A.A., Cervantes Tavera A.-M., Salas Alvarado J., Evstigneev M.P. Parsing of the free energy of aromatic-aromatic stacking interactions in solution. J. Chem. Thermodyn., 2011, vol. 43, pp. 1424-1434.; DOI: https://doi.org/10.1016/j.jct.2011.04.014; EDN: https://elibrary.ru/PAHJKX
7. Turcu I., Bogdan M. Size dependence of molecular self-assembling in stacked aggregates. 1. NMR investigation of ciprofloxacin self-association. J. Phys. Chem. B, 2012, vol. 116, pp. 6488-6498.
8. Evstigneev M.P., Buchelnikov A.S. The role of mixing entropy in molecular self-assembly. Chem. Phys. Lett., 2013, vol. 567, pp. 48-49.; DOI: https://doi.org/10.1016/j.cplett.2013.02.062; EDN: https://elibrary.ru/XKVAAP
9. Beshnova D.A., Lantushenko A.O., Davies D.B., Evstigneev M.P. Profiles of equilibrium constants for self- association of aromatic molecules. J. Chem. Phys. 2009, vol. 130, pp. 165105-7.
10. Tavagnacco L., Schnupf U., Mason P.E., Saboungi M.-L., Cesàro A., Brady J.W. Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J. Phys. Chem. B, 2011, vol. 115, pp. 10957-10966.; DOI: https://doi.org/10.1021/jp2021352; EDN: https://elibrary.ru/PLMKFV
11. Ford D.M. Enthalpy-entropy compensation is not a general feature of weak association. J. Am. Chem. Soc., 2005, vol. 127, pp. 16167-16170.; DOI: https://doi.org/10.1021/ja054519c; EDN: https://elibrary.ru/LSWRND
12. Martinez C.R., Iverson B.L. Rethinking the term ‘pi-stacking’. Chem. Sci., 2012, vol. 3, pp. 2191-2201.; DOI: https://doi.org/10.1039/c2sc20045g; EDN: https://elibrary.ru/PPSZGZ
13. Evstigneev M.P. Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem., 2014, vol. 33, pp. 229-273.; DOI: https://doi.org/10.1080/0144235X.2014.926151; EDN: https://elibrary.ru/UEOWIB
14. Turcu I., Mic M. Size dependence of molecular self-assembling in stacked aggregates. 2. Heat exchange effects. J. Phys. Chem. B, 2013, vol. 117, pp. 9083-9093.
15. Fülöp Z., Gref R., Loftsson T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int. J. Pharm., 2013, vol. 454, pp. 559-561.; DOI: https://doi.org/10.1016/j.ijpharm.2013.06.058; EDN: https://elibrary.ru/YDUFDT
16. Gallagher K., Sharp K. Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys. J. 1998, vol. 75, pp. 769-776.; DOI: https://doi.org/10.1016/S0006-3495(98)77566-6; EDN: https://elibrary.ru/YDSOMJ
17. Cockroft S.L., Perkins J., Zonta C., Adams H., Spey S.E., Low C.M.R., Vinter J.G., Lawson K.R., Urch C.J., Hunter C.A. Substituent effects on aromatic stacking interactions. Org. Biomol. Chem., 2007, vol. 5, pp. 1062-1080.
18. Martin R.B. Comparisons of indefinite self-association models. Chem. Rev., 1996, vol. 96, pp. 3043-3064.
19. Mosunov A.A., Rybakova K.A., Rogova O.V., Evstigneev M.P. Binding polynomial in molecular self-assembly. Phys. Rev. E, 2014, vol. 89, pp. 062138-4.
20. Tobolsky A.V., Blatz P.J. Thermodynamics of linearly associated systems. J. Chem. Phys., 1945, vol. 13, pp. 379-380.
21. Hernandez Santiago A.A., Buchelnikov A.S., Rubinson M.A., Yesylevskyy S.O., Parkinson J.A., Evstigneev M.P. Shape-independent model (SHIM) approach for studying aggregation by NMR diffusometry. J. Chem. Phys., 2015, vol. 142, pp. 104202-13.; DOI: https://doi.org/10.1063/1.4913974; EDN: https://elibrary.ru/UFOSED
22. Tamura A., Privalov P.L. The entropy cost of protein association. J. Mol. Biol., 1997, vol. 273, pp. 1048-1060.; DOI: https://doi.org/10.1006/jmbi.1997.1368; EDN: https://elibrary.ru/XZSQCB