Измерен уровень митохондриального потенциала у доимплантационных эмбрионов мыши на стадии зиготы, 2-х, 4-х и 8-ми бластомеров. Показано, что под воздействием светодиодного зеленого (λmax = 520 нм) и красного (λmax = 635 нм) света в 2-х клеточных эмбрионах происходят изменения, сопровождающиеся ростом экспрессии генов пролиферации, репарации ДНК и антиапоптотических маркеров. Зеленый свет увеличивает жизнеспособность 2-клеточных эмбрионов и приводит к увеличению митохондриального потенциала.
доимплантационные эмбрионы, низкоинтенсивное световое излучение, биоэлектрические сигналы, митохондриальный потенциал, экспрессия генов
1. Karu T.I. Stimulation of Metabolic Processes by Low-Intensity Visible Light. Laser Applications in Medicine, Biology, and Environmental Science, 2003, vol. 5149, pp. 60-66.
2. Lin F., Josephs S.F., Alexandrescu D.T., Ramos F., Bogin V., Gammill V., Dasanu C.A., De Necochea-Campion R., Patel A.N., Carrier E., Koos D.R. Lasers, stem cells and COPD. J. Translat. Med., 2010, vol. 8, pp. 16-25.
3. Sheiko E.A., Shikhlyarova A.I., Zlatnik E.Yu., Zakora G.I. Effect of monochromatic light of low intensity on L929 skin fibroblast culture. Bulletin of Experimental Biology and Medicine, 2006, vol. 141, no. 6, pp. 738-740.; DOI: https://doi.org/10.1007/s10517-006-0267-0; EDN: https://elibrary.ru/LJUXVP
4. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med, 1998, vol. 22, no. 4, pp. 212-8.
5. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg., 2005 vol. 2, pp. 161-166.
6. Fujihara N.A., Hiraki K.R., Marques M.M. Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med., 2006, vol. 38, no. 4, pp. 332-6.; DOI: https://doi.org/10.1002/lsm.20298; EDN: https://elibrary.ru/LOMECV
7. Stadler I., Evans R., Kolb B., Naim J.O., Narayan V., Buehner N., Lanzafame R.J. In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med., 2000, vol. 27, no. 3, pp. 255-61.
8. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med., 2007, vol. 39, no. 4, pp. 373-8.
9. Van Breugel HH, Bär PR. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner. J Neurocytol, 1993, vol. 22, no. 3, pp. 185-90.; DOI: https://doi.org/10.1007/BF01246357; EDN: https://elibrary.ru/XZDXUY
10. Gavish L., Perez L., Gertz S.D. Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med., 2006, vol. 38, no. 8, pp.779-86.; DOI: https://doi.org/10.1002/lsm.20383; EDN: https://elibrary.ru/MMIDPT
11. Schindl A., Merwald H., Schindl L., Kaun C., Wojta J. Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol, 2003, vol. 148, no. 2, pp. 334-6.
12. Mirsky N., Krispel Y., Shoshany Y., Maltz L., Oron U. Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal, 2002, vol. 4, no. 5, pp. 785-90.; DOI: https://doi.org/10.1089/152308602760598936; EDN: https://elibrary.ru/LVMNGV
13. Chernov A.S., Reshetnikov D.A., Fakhranyrova L.I., Manokhin A.A., Davydova G.A.,Selezneva I.I., Khramov R.N. Stimulation of development of early mice embryos by the artificial sunlight supplemented with fluorescent orange-red component. Medline.ru,, 2013, vol.14, no. 2, pp. 295-312.; EDN: https://elibrary.ru/RYBHIH
14. Chernov A.S., Reshetnikov D.A., Manokhin A.A., Gudkov S.V., Khramov R.N. Influence of the artificial transformed sunlight on the preimplantation mouse embryos development in vitro. Vestnik biotechnologii i phisiko-kchimicheskoi biologii im. Yu.A. Ovchinnikova., 2017, vol. 13, no. 1, pp. 42-49.
15. Ermakov A.M., Chernov A.S., Selezneva I.I., Poltavtseva R.A. A study of the impacts of low-intensity light irradiation in the red (λmax = 635 nm) and green (λmax = 520 nm) ranges on the proliferative activity and gene expression profiles of MNNG/hos cells and human fetal fibroblasts. Biophysics, 2017, vol. 62. no. 1, pp. 63-67.
16. Karu T.I. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem Photobiol B., 1999, vol. 49, no. 1, pp. 1-17.; DOI: https://doi.org/10.1016/S1011-1344(98)00219-X; EDN: https://elibrary.ru/LFGXZT
17. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th edition. Section 18.5. New York, 2002, 321 p.
18. Buravlev E.A., Zhidkova T.V., Vladimirov Y.A., Osipov A.N. Lasers Med Sci.,2014, vol. 28, no. 3, pp. 785-790.
19. Passarella S., Casamassima F., Molinari S. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by He-Ne-laser. FEBS Lett., 1994, vol. 175, pp. 95-99.
20. Karu T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol., 2008, no. 84, pp. 1091-1099.; DOI: https://doi.org/10.1111/j.1751-1097.2008.00394.x; EDN: https://elibrary.ru/LLFGDD
21. Lavi R., Shainberg A., Friedmann H. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J. Biol. Chem., 2003, vol. 278, no. 42, pp. 40917-40922.; DOI: https://doi.org/10.1074/jbc.M303034200; EDN: https://elibrary.ru/LVMNMZ
22. Passarella S., Perlino E., Quagliariello E. Evidence of changes induced by He-Ne-laser irradiation in the biochemical properties of rat liver mitochondria. Bioelectrochem. Bioenerg., 1993, no. 10, pp. 185-198.
23. Chen A.CH., Hamblin M. [et al.] Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom, 2009, no. 9, pp.1-3.
24. Houreld N.N. Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. ScientificWorldJournal, 2014, vol. 2014: p398412, DOI:https://doi.org/10.1155/2014/398412.; ; EDN: https://elibrary.ru/SQFVCR
25. Chernov A.S., Davidova G.A., Kovalitskaya Y.A. Investigation of beta-endorphin reception in preimplantation development of a mouse embryo in vitro. Rus. J. of bioorganic chemistry, 2012, vol. 38, no. 2, pp. 177-183.
26. Romek M., Gajda B., Krzysztofowicz E., Kucia M., Uzarowska A. Theriogenology, 2017, no. 102, pp. 1-9.
27. Chen H., Detmer S.A., Ewald A.J., Griffin E.E., Fraser S.E., Chan D.C. J. Cell Biol., 2003, no. 160, pp. 189-200.; DOI: https://doi.org/10.1083/jcb.200211046; EDN: https://elibrary.ru/QGHIRZ
28. Roos W.P., Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med., 2006, vol. 12, no. 9, pp. 440-50.; DOI: https://doi.org/10.1016/j.molmed.2006.07.007; EDN: https://elibrary.ru/XZUTOD
29. Poot M., Gibson L.L., Singer V.L. Detection of Apoptosis in Live Cells by MitoTrackery Red CMXRos and SYTO Dye Flow Cytometry. Cytometry,1997, no. 27, pp. 358-364.
30. Mazyrenko N.N. Gene Genetic features and markers of a melanoma of skin. Yspechi molekyliarnoi onkologii, 2014, vol.2, pp. 26-35.
31. Chernov A.S., Teplov I.U., Vasilov R.G. Role of the transmembrane potential in preimplantation mammalian embryos. Actual’nue voprosu biologicheskoi phisiki i kchimii, 2017, vol.2, no. 1, pp. 96-99.