Α-Кристаллин является основным белком хрусталика глаза позвоночных. Под α-кристаллином понимается смесь гомологичных αА- и αВ- кристаллинов, которые формируют большие гетерогенные комплексы и отвечают за прозрачность хрусталика глаза. Установлено, что α-кристаллин принадлежит к семейству малых белков теплового шока (sHsp) и выполняет шапероно-подобную функцию, предотвращая денатурацию и агрегацию белков. 3D структура нативного α-кристаллина не установлена. В данной работе мы исследовали с помощью метода электронной микроскопии (ЭМ) структуру α-кристаллина из хрусталика глаза быка. Наши экспериментальные данные привели к выводу, что получить достоверную структуру α-кристаллинового комплекса невозможно. Анализ литературу по изучению α-кристаллина привел нас с заключению, что в нативных in vivo условиях структура и функционирование α-кристаллина может отличаться от его поведения в условиях in vitro . В связи с этим высказывается ряд предположений относительно функционирования α-кристаллина в виде небольших его агрегатов (например, димеров) и роли αА-кристаллина в качестве специализированного шаперона хрусталика глаза (шаперона для αВ-кристаллина).
α-кристаллин, малые белки теплового шока, электронная микроскопия
1. Benedek G. Why the eye lens is transparent. Nature, 1983, vol. 302, pp. 383-384.
2. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 1983, vol. 302, pp. 415-417.
3. Philipson B. Distribution of protein within lenses with x-ray cataract. Invest. Ophthalmol., 1969, vol. 8, pp. 271-280.
4. Pierscionek B.K., Augusteyn R.C. The refractive index and protein distribution in the blue eye trevally lens. J. Am. Optom. Assoc., 1995, vol. 66, pp. 739-743.
5. Pierscionek B.K., Chan D.Y. Refractive index gradient of human lenses. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom., 1989, vol. 66, pp. 822-829.
6. Vérétout F., Delaye M., Tardieu A. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. J. Mol. Biol., 1989, vol. 205, pp. 713-728.
7. Fagerholm P.P., Philipson B.T., Lindström B. Normal human lens - the distribution of protein. Exp. Eye Res., 1981, vol. 33, pp. 615-620.
8. Bloemendal H., de Jong W., Jaenicke R., Lubsen N.H., Slingsby C., Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol., 2004, vol. 86, pp. 407-485.
9. de Jong W.W., Caspers G.J., Leunissen J.A. Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int. J. Biol. Macromol., 1998, vol. 22, pp. 151-162.
10. Horwitz J. Alpha-crystallin. Exp. Eye Res., 2003, vol. 76, pp. 145-153.
11. Shiliaev N.G., Selivanova O.M., Galzitskaya O.V. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates. J. Bioinform. Comput. Biol., 2016, vol. 14, p. 1641004.
12. Bloemendal H. The vertebrate eye lens. Science, 1977, vol. 197, pp. 127-138.
13. Quax-Jeuken Y., Quax W., van Rens G., Khan P.M., Bloemendal H. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 5819-5823.
14. Ngo J.T., Klisak I., Dubin R.A., Piatigorsky J., Mohandas T., Sparkes R.S., Bateman J.B. Assignment of the alpha B-crystallin gene to human chromosome 11. Genomics, 1989, vol. 5, pp. 665-669.
15. Srinivasan A.N., Nagineni C.N., Bhat S.P. Alpha A-crystallin is expressed in non-ocular tissues. J. Biol. Chem., 1992, vol. 267, pp. 23337-23341.
16. Renkawek K., de Jong W.W., Merck K.B., Frenken C.W., van Workum F.P., Bosman G.J. Alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol. (Berl.), 1992, vol. 83, pp. 324-327.
17. Renkawek K., Voorter C.E., Bosman G.J., van Workum F.P., de Jong W.W. Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol. (Berl.), 1994, vol. 87, pp. 155-160.
18. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 10449-10453.
19. Horwitz J., Huang Q.L., Ding L., Bova M.P. Lens alpha-crystallin: chaperone-like properties. Methods Enzymol., 1998, vol. 290, pp. 365-383.
20. Siezen R.J., Berger H. The quaternary structure of bovine alpha-crystallin. Size and shape studies by sedimentation, small-angle X-ray scattering and quasi-elastic light scattering. Eur. J. Biochem., 1978, vol. 91, pp. 397-405.
21. de Jong W.W., Caspers G.J., Leunissen J.A. Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int. J. Biol. Macromol., 1998, vol. 22, pp. 151-162.
22. Haslbeck M., Peschek J., Buchner J., Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim. Biophys. Acta, 2016, vol. 1860, pp. 149-166.
23. Peschek J., Braun N., Franzmann T.M., Georgalis Y., Haslbeck M., Weinkauf S., Buchner J. The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 13272-13277.
24. Kim K.K., Kim R., Kim S.H. Crystal structure of a small heat-shock protein. Nature, 1998, vol. 394, pp. 595-599.
25. Haley D.A., Horwitz J., Stewart P.L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol., 1998, vol. 277, pp. 27-35.
26. Haley D.A., Bova M.P., Huang Q.L., Mchaourab H.S., Stewart P.L. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J. Mol. Biol., 2000, vol. 298, pp. 261-272.
27. Jehle S., Vollmar B.S., Bardiaux B., Dove K.K., Rajagopal P., Gonen T., Oschkinat H., Klevit R.E. N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 6409-6414.
28. Braun N., Zacharias M., Peschek J., Kastenmüller A., Zou J., Hanzlik M., Haslbeck M., Rappsilber J., Buchner J., Weinkauf S. Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc. Natl. Acad. Sci. U.S., 2011, vol. 108, pp. 20491-20496.
29. Peschek J., Braun N., Rohrberg J., Back K.C., Kriehuber T., Kastenmuller A., Weinkauf S., Buchner J. Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc. Natl. Acad. Sci., 2013, vol. 110, E3780-E3789.
30. Kampinga H.H., Garrido C. HSPBs: small proteins with big implications in human disease. Int. J. Biochem. Cell Biol., 2012, vol. 44, pp. 1706-1710.
31. Chiou S.H., Azari P., Himmel M.E., Squire P.G. Isolation and physical characterization of bovine lens crystallins. Int. J. Pept. Protein Res., 1979, vol. 13, pp. 409-417.
32. Spector A., Li L.K., Augusteyn R.C., Schneider A., Freund T. α-Crystallin. The isolation and characterization of distinct macromolecular fractions. Biochem. J., 1971, vol. 124, pp. 337-343.
33. Siezen R.J., Bindels J.G., Hoenders H.J. The quaternary structure of bovine alpha-crystallin. Size and charge microheterogeneity: more than 1000 different hybrids? Eur. J. Biochem., 1978, vol. 91, pp. 387-396.
34. Bloemendal H., Berns T., Zweers A., Hoenders H., Benedetti E.L. The state of aggregation of α-crystallin detected after large-scale preparation by zonal centrifugation. Eur. J. Biochem., 1972, vol. 24, pp. 401-406.
35. Peschek J., Braun N., Rohrberg J., Back K.C., Kriehuber T., Kastenmüller A., Weinkauf S., Buchner J. Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. E3780-3789.
36. Gu L., Abulimiti A., Li W., Chang Z. Monodisperse Hsp16.3 Nonamer Exhibits Dynamic Dissociation and Reassociation, with the Nonamer Dissociation Prerequisite for Chaperone-like Activity. J. Mol. Biol., vol. 319, pp. 517-526.
37. Brady J.P., Garland D., Duglas-Tabor Y., Robison W.G., Jr. Groome A., Wawrousek E.F. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 884-889.
38. Ma Z., Hanson S.R.A., Lampi K.J., David L.L., Smith D.L., Smith J.B. Age-Related Changes in Human Lens Crystallins Identified by HPLC and Mass Spectrometry. Exp. Eye Res., 1998, vol. 67, pp. 21-30.