Изменение конформации и распределения гемоглобина при изменении объема эритроцита
Аннотация и ключевые слова
Аннотация (русский):
Эритроцит представляет собой клетку, внутриклеточное пространство которой на 40% состоит из молекул гемоглобина (Гб), остальные 60% приходятся на молекулы воды. При изменении внутриклеточного объема, которое возможно при прохождении клеток эритроцита по кровеносному руслу, предполагается возможность перераспределения внутриклеточных компонентов клетки вследствие изменения её объема. Методами оптической спектроскопии (неинвазивные методы инфракрасной спектроскопии, Раман-спектроскопии, лазерной интерференционной микроскопии) выявлены изменения морфологии, конформации и перераспределения молекул Гб в эритроците человека в следствие увеличения соотношения [Na+]in и [K+]in при блокировании Na+/K+-АТФазы клетке. Установлено, что снижение активности работы Na+/K+-АТФазы при помощи блокатора уабаина (3 мМ), приводит не только к увеличению [Na+]in в клетке, но и увеличению положительного заряда на цитоплазматической поверхности плазматической мембраны эритроцита. В этих условиях выявлены изменения конформации как гемовой, так и глобиновой части цитоплазматического Гб. Показано, что деполяризация клетки, вместе с изменением объема клетки, приводит к снижению плотности упаковки молекулы Гб, которые могут быть связаны как с сорбцией внутриклеточного Na+ (или Са2+) с Гб, так и увеличением количества молекул воды в клетке и перераспределением Гб в клетке. Данные процессы могут приводить к изменению конформации примембранного Гб, так и к перераспределению и изменению конформации цитоплазматического Гб.

Ключевые слова:
гемоглобин, конформация, уабаин, Раман-спектроскопия, инфракрасная спектроскопия
Список литературы

1. Brearley C.J., Aronson J.K., Boon N.A., Raine A.E.G. Effects of haemodialysis and continuous ambulatory peritoneal dialysis on abnormalities of ion transport in vivo in patients with chronic renal failure. Clinical Science, 1993, vol. 85, no. 6, doi:https://doi.org/10.1042/cs0850725.

2. Kovalenko S.S., Parshina E.Yu, Yusipovich A.I., Maksimov G.V., Rubin A.B. Changes in the hemoporphyrin conformation in hemoglobin and NO-binding in erythrocytes under the action of insulin-like growth factor 1. Biophysics, 2014, vol. 59, no. 6, doi:https://doi.org/10.1134/S0006350914060062.; ; EDN: https://elibrary.ru/UFYLTP

3. Ivanova S.M., Labetskaya O.I., Anisimov N.A., Maksimov G.V., Parshina E.Yu., Yusipovich A.I. Morfobioximicheskie pokazateli e`ritrocitov i sostoyaniya gemoporfirinov gemoglobina u obsleduemy`x v dinamike kratkovremennoj izolyacii v germoob`eme, Aviakosmicheskaya i e`kologicheskaya medicinаа, 2019, vol. 53, no. 2, doi:https://doi.org/10.21687/0233-528X-2019-53-2-62-67.; ; EDN: https://elibrary.ru/THUYHU

4. Franceshi L. de, Oliveri O., Girelli D., Lupo A., Bernich P., Corrocher R. Red blood cell cation transports in uraemic anaemia: evidence for an increased K/CI co-transport activity. Effects of dialysis and erythropoietin treatment. European Journal of Clinical Investigation, 1995, vol. 25, no. 10, doi:https://doi.org/10.1111/j.1365-2362.1995.tb01955.x.

5. Weiler E.W., Saldanha L.F., Khalil-Manesh F., Prins B.A., Purdy R.E., Gonick H.C. Relationship of Na-K-ATPase inhibitors to blood-pressure regulation in continuous ambulatory peritoneal dialysis and hemodialysis. Journal of the American Society of Nephrology, 1996, vol. 7, no. 3, doi:https://doi.org/10.1681/ASN.V73454.

6. Katyukhin L.N., Kazennov A.M., Maslova M.N., Matskevich Y.A. Rheologic properties of mammalian erythrocytes: relationship to transport ATPases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1998, vol. 120, no. 3, doi:https://doi.org/10.1016/S0305-0491(98)10035-4.; ; EDN: https://elibrary.ru/LEQSQJ

7. Krzesinski J.-M., Du F., Pequeux M.L., Rorive G.L. Krzesinski J.-M. Plasma Na-K ATPase inhibitor activity and intracellular ions during hemodialysis. The International Journal of Artificial Organs, 1993, vol. 16, no. 1, doi:https://doi.org/10.1177/039139889301600106.

8. Jorgensen P.L., Hakansson K.O., Karlish S.J.D. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annual review of physiology, 2003, vol. 65, no. 1.

9. Yusipovich A.I., Zagubizhenko M.V., Levin G.G., Platonova A., Parshina E.Y., Grygorzcyk R., Maksimov G.V., Rubin A.B., Orlov S.N. Laser interference microscopy of amphibian erythrocytes: Impact of cell volume and refractive index. Journal of Microscopy, 2011, vol. 244, no. 3, doi:https://doi.org/10.1111/j.1365-2818.2011.03516.x.; ; EDN: https://elibrary.ru/PEFEID

10. Bryzgalova N.Y., Brazhe N.A., Yusipovich A.I., Maksimov G.V., Rubin A.B. Role of the state of erythrocyte cytoplasm in the change of hemoglobin affinity for oxygen. Biophysics, 2009, vol. 54, no. 308, doi:https://doi.org/10.1134/S0006350909030075.; ; EDN: https://elibrary.ru/MWXBYR

11. Kozinecz GI., Simovart Yu.A. Poverxnostnaya arxitektonika kletok perifericheskoj krovi v norme i pri zabolevaniyax sistemy` krovi. E`stonskaya sel`skoxozyajstvennaya akademiya, 1984.

12. Mazeron P., Muller S., Azouzi H. El On intensity reinforcements in small-angle light scattering patterns of erythrocytes under shear. European Biophysics Journal, 1997.

13. Yusipovich A.I., Bryzgalova N.Y., Parshina E.Y., Lomakin A.G., Rodnenkov O.V., Levin G.G., Maksimov G.V., Rubin A.B. Evaluation of erythrocyte shape and status by laser interference microscopy. Bulletin of Experimental Biology and Medicine, 2008, vol. 145, no. 382, doi:https://doi.org/10.1007/s10517-008-0097-3.; ; EDN: https://elibrary.ru/LLFFWZ

14. Yusipovich A.I., Novikov S.M., Kazakova T.A., Erokhova L.A., Brazhe N.A., Lazarev G.L., Maksimov G.V. Peculiarities of studying an isolated neuron by the method of laser interference microscopy. Quantum Electronics, 2006, vol. 36, no. 9, doi:https://doi.org/10.1070/QE2006v036n09ABEH013408.; ; EDN: https://elibrary.ru/LJYUZF

15. Din S. El, Aisha A., Bahay A.Z. El Effect of gamma irradiation on infrared spectra of rat hemoglobin. Radiation Physics and Chemistry, 1994, vol. 44, no.1-2, doi:https://doi.org/10.1016/0969-806X(94)90130-9.

16. Spigulis J., Krumins A., Millers D., Sternberg A., Muzikante I., Ozols A., Ozolinsh M. Micro-Raman scattering and infrared spectra of hemoglobin. 2008, doi:https://doi.org/10.1117/12.815796.; ; EDN: https://elibrary.ru/MYYEBJ

17. Orlov S.N. Membrannaya teoriya patogeneza arterialnoj gipertenzii: chto my znaem ob etom polveka spustya? Bulleten sibirskoj mediciny, 2019, vol. 18, no. 2, doi:https://doi.org/10.20538/1682-0363-2019-2-234-247.; ; EDN: https://elibrary.ru/PPQPLY

18. Suglobova E.D., Spiridonov V.N., Borisov Yu.A., Lebedeva E.B., Gavrilenkov P.V. Biofizicheskie xarakteristiki membran e`ritrocitov u bol`ny`x, poluchayushhix lechenie regulyarny`m gemodializom. Rezistenstnost` k dejstviyu vneshnego kanaloformera. Nefrologiya, 1998.

19. Sidorenko S.V., Rebrov V.G., Verkhov D.G., Usanov A.D., Skripal A.V., Usanov D.A. Competitive Binding of K+ in the Presence of Na+ with Bovine Serum Albumin and Hemoglobin. Chemistry. Biology. Ecology, 2016, vol. 16, no. 3, doi:https://doi.org/10.18500/1816-9775-2016-16-3-279-284.

20. Kalyagina N.V., Marty`nov M.V., Ataullaxanov F.I. Matematicheskij analiz regulyacii ob``ema e`ritrocita cheloveka s uchetom uprugogo vozdejstviya obolochki e`ritrocita na obmenny`e processy`. Biologicheskie membrany, 2013, vol. 30, no. 2, doi:https://doi.org/10.7868/S0233475513010052.; ; EDN: https://elibrary.ru/PVIUJV

21. Ataullaxanov F.I., Klyatkina A.B., Vitviczkij V.M., Pichugin A.V. Regulyaciya obyoma eritrocitov cheloveka. Rol kalievyx kanalov, aktiviruemy s kalciem. Biologicheskie membrany, 1993, vol. 10, no. 5.

22. Wiley J.S., McCulloch K.E. Calcium ions, drug action and the red cell membrane. Pharmacology & Therapeutics, 1982, vol. 18, no. 2, doi:https://doi.org/10.1016/0163-7258(82)90070-5.

23. Friederichs E., Farley R.A., Meiselman H.J. Influence of Calcium Permeabilization and Membrane-Attached Hemoglobin on Erythrocyte Deformability. American Journal of Hematology, 1992, vol. 41, doi:https://doi.org/10.1002/ajh.2830410306.

24. Peng Z., Li X., Pivkin I.V., Dao M., Karniadakis G.E., Suresh S. Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences, 2013, vol. 110, no. 33, doi:https://doi.org/10.1073/pnas.131182711.

25. Gasper R., Dewelle J., Kiss R., Mijatovic T., Goormaghtigh E. IR spectroscopy as a new tool for evidencing antitumor drug signatures. Biochimica et Biophysica Acta - Biomembranes, 2009, vol. 1788, no. 6.

26. Lasch P., Boese M., Pacifico A., Diem M. FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 2002, vol. 28, no. 1, doi:https://doi.org/10.1016/j.bbamem.2009.02.016.; EDN: https://elibrary.ru/AXFNEJ

27. Slatinskaya O.V, Brazhe N.A., Orlov S.N., Maksimov G.V. The Role of Extracellular Ca2+ in Regulating the Distribution and Conformation of Hemoglobin in Erythrocytes. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2021, vol. 15, no. 3, doi:https://doi.org/10.1134/S1990747821030090.; ; EDN: https://elibrary.ru/WXTQRY


Войти или Создать
* Забыли пароль?