RADIATION-HARDENING-BY-DESIGN OF THE HIGHPERFORMANCE CMOS NANOMETER SYSTEM-ON-CHIP
Abstract and keywords
Abstract (English):
The influence of the dominant radiation effects in bulk CMOS IC and VLSI on their electrical parameters and characteristics is analyzed. The effects of scaling and electrical modes on device and parasitic n-MOS transistors on the radiation hardness parameters are considered. The methodology of radiation-hardening-by-design of system-on-chip (SoC) and SRAM was developed for the 250-90 nm bulk CMOS processes. Technical solutions are proposed that provide an increased level of total ionizing dose tolerance, failure tolerance, and the absence of the latch-up effect. The framework for high-performance radiation-hardened SoC and SRAM design, containing standard cell libraries and IP-blocks, has been created. Basic technical solutions are certified on special test chips and as part of developed VLSI.

Keywords:
», CMOS transistors, system-on-chip, radiation hardness, radiationhardening-by-design, standard cell library, IP-block, single event effects, latch-up
Text
Text (PDF): Read Download
References

1. Lacoe R. C. CMOS scaling, design principles and hardening-by-design methodology. In Short Course Notebook. Nuclear and Space Radiation Effects Conf. - NSREC’03 (Monterey, Jul. 2003). 2003. S. II-1-II-142.

2. Gerasimov Yu. M., Grigor'ev N. G., Kobylyackiy A. V., Petrichkovich Ya. Ya., Solohina T. V. Ot pervyh KMOP tranzistorov do radiacionno-stoykih nanometrovyh KMOP SBIS SnK // Sb. trudov 4-y Mezhdunarodnoy nauchnoy konferencii «Elektronnaya komponentnaya baza i mikroelektronnye moduli». M : TEHNOSFERA, 2018. S. 228-234.

3. Nemudrov V., Martin G. Sistemy-na-kristalle. Proektirovanie i razvitie. M.: TEHNOSFERA, 2004. 216 s.

4. Nikiforov A. Yu., Telec V. A., Boychenko D. V. Trebovaniya radiacionnoy stoykosti - ekzotika dlya gurmanov ili garantiya nalichiya i tehnicheskogo urovnya rezul'tata razrabotki dlya vseh kategoriy potrebiteley EKB? // Sb. trudov 3-y Mezhdunarodnoy nauchnoy konferencii «Elektronnaya komponentnaya baza i elektronnye moduli». M. : TEHNOSFERA, 2017. S. 32-36.

5. Gerasimov Yu. M., Glushkov A. V., Grigor'ev N. G., Petrichkovich Ya. Ya., Solohina T. V. Osobennosti proektirovaniya radiacionno-stoykih bibliotek elementov, SF-blokov i nano-SBIS SnK // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem 2008. Sb. trudov / Pod obsch. red. A. L. Stempkovskogo. - M. : IPPM RAN, 2008. S.272-275.

6. Wong H., Iwai H. On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors // Microelectronic Engineering. 2006. №. 83. S. 1867-1904.

7. Radiacionnaya stoykost' izdeliy EKB / Pod red. d-ra tehn. nauk, prof. A. I. Chumakova. M. : NIYaU MIFI, 2015. 512 s.

8. Chumakov A. I. Deystvie kosmicheskoy radiacii na integral'nye shemy. M. : Radio i svyaz'. 2004. 320 s.

9. Baumann R. Single-Event Effects in Advanced CMOS. In Short Course Notebook. Nuclear and Space Radiation Effects Conf. - NSREC’05 (Ceattle, Jul. 2005). S. II-1-II-59.

10. Roy K., Mukhopadhyay S., Mahmoodi-Meimand H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits // Proc. IEEE. 2003. T. 91. № 2. S. 305-327.

11. Esqueda I. S., Barnaby H. J., Alles M. L. Two-dimensional methodology for modeling radiation-induced off-state leakage in CMOS Technologies // IEEE Trans. Nucl. Sci. 2005. T. 52. № 6. S. 2259-2264.

12. Barnaby H. J., McLain M. L., Esqueda I. S., Chen X. J. Modeling ionizing radiation effects in solid state materials and CMOS Devices // IEEE Trans. Circuits Syst. I, Reg. Papers. 2009. T. 56. № 8. S. 1870-1883.

13. Witczak S. C., Lacoe R. C., Osborn J. V., Hutson J. M., Moss S. C. Dose-Rate Sensitivity of Modern nMOSFETs // IEEE Trans. Nucl. Sci. 2005. T. 52. № 6. S. 2602-2608.

14. Gadlage M. J., Schrimpf R. D., Benedetto J. M., Eaton P. H., Mavis D. J., Sibley M., Avery K., Turflinger T. L. Single event transient pulsewidths in digital microcircuits // IEEE Trans. Nucl. Sci. 2004. T. 51. № 6. S. 3285-3290.

15. Giot D., Roche P., Gasiot G., Harboe-Sorensen R. Multiple-Bit Upset Analysis in 90 nm SRAMs : Heavy Ions Testing and 3D Simulations // IEEE Trans. Nucl. Sci. 2004. T. 54. № 4. S. 3278-3284.

16. Dodd P. E., Shaneyfelt M. R., Felix J. A., Schwank J. R. Production and propagation of single-event transients in high-speed digital logic ICs // IEEE Trans. Nucl. Sci. 2007. T. 51. № 6. S. 904-911.

17. Balasubramanian A., Bhuva B. L., Black J. D., Massengill L. W. RHBD Techniques for Mitigating Effects of Single-Event Hits Using Guard-Gates // IEEE Trans. Nucl. Sci. 2005. T. 52. № 6. S. 2531-2535.

18. Gerasimov Yu. M., Glushkov A. V., Grigor'ev N. G., Petrichkovich Ya. Ya., Solohina T. V. Pat. 2539869 (RF). Radiacionno-stoykaya biblioteka elementov na komplementarnyh metal-okisel-poluprovodnik tranzistorah. Opubl. v B. I., 2015. № 3.

19. Gerasimov Yu. M., Grigor'ev N. G., Kobylyackiy A. V., Petrichkovich Ya. Ya. Pat. 2674415 (RF). Radiacionno-stoykaya biblioteka elementov na komplementarnyh metal-okisel-poluprovodnik tranzistorah. Opubl. v B. I., 2018. № 34.

20. Gerasimov Yu. M., Grigor'ev N. G., Kobylyackiy A. V., Petrichkovich Ya. Ya., Pat. 2674935 (RF). Radiacionno-stoykiy element pamyati dlya staticheskih operativnyh zapominayuschih ustroystv na komplementarnyh metall-okisel-poluprovodnik tranzistorah. Opubl. v B. I. 2018. № 35.

21. Gerasimov Yu. M., Grigor'ev N. G., Kobylyackiy A. V., Petrichkovich Ya. Ya. Radiacionno-stoykie elementy pamyati dlya nanometrovyh KMOP SF-blokov i SBIS // Elektronnaya tehnika, Seriya 3, Mikroelektronika, 2015, № 1(157). S. 10-16.

22. Gerasimov Yu. M., Grigor'ev N. G., Kobylyackiy A. V. Metodika vybora parametrov logicheskoy cepi v nanometrovyh KMOP SBIS s povyshennoy sboeustoychivost'yu // Problemy razrabotki perspektivnyh mikroi nanoelektronnyh sistem - 2016. Sbornik trudov / Pod obsch. red. akademika A. L. Stempkovskogo. M. : IPPM RAN, 2016. Chast' IV. S. 172-177.


Login or Create
* Forgot password?