To build effective methods of approximation and spectral-temporal analysis of various processes, we propose special tools - complex Weyl-Heisenberg signal frames, which allow decomposing signals to components that are well localized simultaneously in time and frequency The chosen optimality criterion ensures the construction of a tight signal frame with the lowest standard deviation of frame functions from the desired standard. In addition, a special algebraic structure of the synthesis algorithm in the form of a product of sparse matrices allows for efficient computational implementation and flexible adjustment of the frequency-time resolution of the signal functions of the frame. The results of the experiment confirming the effective computational implementation of the algorithm and a good time-frequency localization of frame functions are presented.
Weil-Heisenberg frame, synthesis of optimal tight frames, good frequencytime localization, signal frame, effective computational implementation, frequency-time resolution
1. Gabor D. Theory of communication // J. Inst. Elect. Eng. (London). 1946. T. 93, № 111. S. 429-457.
2. Dobeshi I. Desyat' lekciy po veyvletam. Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika», 2001. 464 s.
3. Wexler J., Raz S. Discrete Gabor expansions // Signal Processing. 1990. T. 21. S. 207-220.
4. Zibulski M., Zeevi Y. Y. Frame analysis of the discrete Gabor-scheme // IEEE Trans. Signal Processing. 1994. T. 42. S. 942-945.
5. Qian S., Chen K., Li S. Optimal biorthogonal functions for finite discrete-time Gabor expansion // Signal Processing. 1992. T. 27. S. 177-185.
6. Augustus J. E., Janssen M., Bolcskei H. Equivaence of Two Methods for Constructing Tight Gabor Frames // IEEE Signal Processing Letters. 2000. T. 7, № 4. S. 79-82.
7. Bolcskei H., Feichtinger H. G., Hlawatsch F. Diagonalizing the Gabor frame operator // Proc. IEEE UK Symp. Applications Time-Frequency Time-Scale Methods. Univ. Warwick, Coventry, U. K., Aug. 1995. S. 249-255.
8. Kozek W., Molish A. F. Robust and efficient multicarrier communication by nonorthonogal Weyl-Heisenbereg systems // IEEE J. Sel. Arreas Comm. 1996. T. 16, S. 1579-1589.
9. Siohan P., Siclet C. Lacaille N. Analysis and design of OFDM/OQAM. systems based on filterbank theory // IEEE Trans. on Signal Processing. 2002. T. 50, № 5. S. 1170-1183.
10. Volchkov V. P. Signal'nye bazisy s horoshey chastotno-vremennoy lokalizaciey // Elektrosvyaz'. 2007. № 2. S. 21-25.
11. Volchkov V. P., Petrov D. A. Orthogonal Well-Localized Weyl-Heisenberg Basis Construction and Optimization for Multicarrier Digital Communication Systems // Proc. of ICUMT, St. Petersburg, Oct. 2009.
12. Volchkov V. P. Novye tehnologii peredachi i obrabotki informacii na osnove horosho lokalizovannyh signal'nyh bazisov // Nauchnye vedomosti BelGU. Seriya «Istoriya. Politologiya. Ekonomika. Informatika». 2009. № 15 (70), vyp. 12/1. S.181-189.
13. Volchkov V. P, Sannikov V. G. Algebraic approach to the optimal synthesis of real signal Weyl-Heisenberg bases. V kn. : IEEE Conference # 43613, 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Minsk, Belarus, 4-5 July 2018. S. 135-142.