SURFACE PLASMONS AND DIFFRACTION OF PLANE WAVES IN METALLIC FILMS AND GRAPHENE STRUCTURES
Abstract and keywords
Abstract (English):
We consider the electric and magnetic surface plasmons in the structures with dielectric and metallic layers, or graphene sheets. The conditions of existence of backward and forward waves and the slow and fast plasmon-polaritons are obtained. We also consider the plasmons and plane wave diffraction for the layer of hyperbolic metamaterial.

Keywords:
diffraction, metallic film, graphene, plasmons, hyperbolic metamaterial
Text
Text (PDF): Read Download
References

1. Tournoisa P., Laude V., Negative group velocities in metal-film optical waveguides // Optics Communications. 1997. Vol. 137. P. 41-45.

2. Negative group velocity of surface plasmons on thin metallic films / Y. M. Liu [et al.] // Proc. SPIE. 2006. Vol. 6323, P. 63231M-8.

3. Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films / D. Yu. Fedyanin [et al.] // Quantum Electron. 2009. Vol. 39, No. 8. P.745-750.

4. Zuev V. S., Zueva G. Ya. Very slow surface plasmons : Theory and practice (Review) // Optics and Spectroscopy. 2008. Vol. 105. P. 852-859.

5. Davidovich M. V. Plasmons in multilayered plane-stratified structures // Quantum Electron. 2017. Vol. 47, No. 6. P. 567-579.

6. Davidovich M. V. Maximum deceleration and negative dispersion of plasmons along a metal layer // Technical Physic Letters. 2017. Vol. 43, No. 22. P. 55-62.

7. Electrodynamics of carbon nanotubes : Dynamic conductivity, impedance boundary conditions, and surface wave propagation / G. Ya. Slepyan [et al.] // Phys. Rev. 1999.

8. Vol. B 60, No. 24. P. 17136-17149.

9. Hanson G. W. Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene //j. Applied Phys. 2008. Vol. 103. P. 064302(1-8).

10. Maksimenko S. A., Slepyan G. Ya. Electrodynamic properties of carbon nanotubes. In : Electromagnetic Fields in Unconventional Structures and Materials, Ed. by O. N. Singh and A. Lakhtakia. New York : John Wiley & Sons, Inc., 2000. P. 217-255.

11. Falkovsky L. A. Dynamic properties of graphene // JETP. 2012. Vol. 115, No. 3. P. 496-508.

12. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene / G. Lovat [et al.] // Phys. Rev. 2013. Vol. B 87, No. 11. P. 115429(1-11).

13. Brazhe R. A., Kochaev A. I., Miftahutdinov R. M. Graphens and their physical properties : a tutorial. Ulyanovsk, Russia : UlSTU Press, 2016. 139 p. [In Russ.].

14. Markov G. T., Chaplin A. F. Excitation of electromagnetic waves. Moscow, Russia : Radio i Sviyaz, 1983. 296 p. [In Russ.].

15. Rytov S. M. Certain theorems on the group velocity of electromagnetic waves // Zh. Eksper. Teoret. Fiz. 1947. Vol. 17, No. 10. P. 930-936.

16. Davidovich M.V. Polaritons and diffraction on the layer of asymmetric hyperbolic metamaterial // Proc. of SPIE. 2020. Vol. 11458. P. 1145813(1-7).

17. Davidovich M. V. Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface // Computer Optics. 2021. Vol. 45, No. 1. P. 48-57.

18. Vainshtein L. A. Electromagnetic waves. Moscow, Russia : Radio i Svyaz, 1988. 440 p. [In Russ.].

19. Mikhailov S. A., Ziegler K. New electromagnetic mode in graphene // Phys. Rev. Lett. 2007. Vol. 99. P. 016803(1-4).


Login or Create
* Forgot password?