Fryazino, Russian Federation
UDK 621.385.632.1 с замедляющей системой без поперечного магнитного поля
Physical principles of output power limitation in low-voltage multibeam klystrons are considered. It is demonstrated that metamaterial consisting of array of metal inductive inserts and located in the cavity’s interaction region makes possible significant increasing of phase velocity of transversal wave in the gap. This reveals the opportunity to enhance uniformity of the RF field interacting with the beams in the gap, interaction region diameter, beams current and power of the klystron without cathode voltage increase. Resonators in S and Ka bands are analyzed.
multibeam klystron, metamaterial, phase velocity, annular resonator, dispersion
1. G. Caryotakis, “High energy microwave device research at the Stanford Linear Accelerator Center,” Proceedings International University Conference, doi:https://doi.org/10.1109/uhf.1999.787870.
2. G. Caryotakis, “The future of klystrons,” Abstracts. International Vacuum Electronics Confer-ence 2000 (Cat. No.00EX392), doi:https://doi.org/10.1109/ove:ec.2000.847388.
3. G. Scheitrum, G. Caryotakis, R. Phillips, D. Sprehn, and R. Fowkes, “High power microwave research at SLAC,” IEEE Conference Record - Abstracts. 1996 IEEE International Confer-ence on Plasma Science, doi:https://doi.org/10.1109/plasma.1996.551442.
4. I. Freydovich and M. Vorobiev, “Pecularities of characteristics of annular resonators for multibeam klystrons,” Electronika. NTB, no. 2, pp. 9-14, 1998. (in Russ.).
5. I. A. Guzilov, O. Y. Maslennikov, and A. V. Konnov, “A way to increase the efficiency of klystrons,” 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), 2013, doi:https://doi.org/10.1109/ivec.2013.6571181.
6. A. N. Yunakov and V. I. Pugnin, “Problems and prospects of creation of high-power wide-band multibeam klystrons in the middle part of centimeter wave band,” Electronnaya technika, ser. 1, “SVCh-technika”, vol. 519, no. 4. pp. 64-67, 2013. (in Russ).
7. S. E. Bankov, Electromagnetic crystals. Moscow, Fizmatlit, 2010. (in Russ).
8. L. Solymar and E. Shamonina, Waves in Metamaterials. Oxford University Press, 2009.
9. M. V. Davidovich, J. V. Stephuk, and P. A. Shilovskii, “Electrophysical properties of metallic wire photonic crystals,” Technical Physics, vol. 57, no. 3, pp. 320-327, 2012, doi:https://doi.org/10.1134/s1063784212030036.
10. A. Smimov, D. Newsham, and D. Yu, “PBG cavities for single-beam and multi-beam electron devices,” Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440), doi:https://doi.org/10.1109/pac.2003.1289636.
11. A. Smimov, D. Newsham, and D. Yu, “PBG cavities for single-beam and multi-beam electron devices,” Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440), doi:https://doi.org/10.1109/pac.2003.1289636.
12. V. Tsarev, “New Fractal and Photonic Crystal Resonators for Multi-Beam Microwave Vacu-um Devices,” 2018 International Conference on Actual Problems of Electron Devices Engi-neering (APEDE), 2018, doi:https://doi.org/10.1109/apede.2018.8542362.