Design and synthesis of new nanomaterials for biomedical applications require a comprehensive assessment of their toxicity in vitro and in vivo . We analyzed the aggregate stability of new types of cerium oxide nanoparticles doped with gadolinium and checked their influence on the proliferative and metabolic activity of human fibroblast in vitro . It has been shown that cerium oxide nanoparticles are not toxic in a wide range of concentrations (10- 5-10-9 M), and are able to stimulate proliferation of the human MSCs in a dose-dependent manner. The high degree of biocompatibility and low toxicity of synthesized nanomaterials allow us to consider it as perspective compound for development of biomedical products.
cerium oxide nanoparticles, proliferative activity, human mesenchymal stem cells
1. Kilbourn B.T. Cerium and Cerium Compounds. Kirk-Othmer Encyclopedia of Chemical Technology, 2003
2. Antonova A.A., Jilina O.V. [et al.] Synthesis and properties of hydrosols of cerium oxide. Colloidal J., 2001, vol. 63, no. 6, pp. 728-734.
3. Killbourn B.T. Cerium: a guide to its role in chemical technology. NY: Molycorp, 1992.
4. Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ryabova A.V., Ivanov V.K. Cerium fluoride nanoparticles protect cells against oxidative stress. Materials Science and Engineering, 2015.
5. Niu J., Azfer A., Rogers L.M., Wang X., Kolattukudy P.E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res., 2007, vol. 73, no. 3, pp. 549-559.; EDN: https://elibrary.ru/IMXAUB
6. Amin K.A., Hassan M.S., Awad el-S.T., Hashem K.S. The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline. Int J Nanomedicine, 2011, vol. 6, pp. 143-149.
7. Kong L., Cai X., Zhou X., Wong L.L., Karakoti A.S., Seal S., McGinnis J.F. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis., 2011, vol. 42, no. 3, pp. 514-523.; DOI: https://doi.org/10.1016/j.nbd.2011.03.004; EDN: https://elibrary.ru/OMNDBL
8. Rubio L., Annangi B., Vila L., Hernández A., Marcos R. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol., 2015.
9. Madero-Visbal R.A., Alvarado B.E., Colon J.F., Baker C.H., Wason M.S., Isley B., Seal S., Lee C.M., Das S., Mañon R. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine, 2012, vol. 8, no. 7, pp. 1223-1231.
10. Zholobak N.M., Sherbakov O.B., Babenko L.P., Bogorad-Kobelska O.S., Bubnov R.V., Spivak M.Y., Ivanov V.K. The perspectives of biomedical application of the nanoceria. EPMA Journal, 2014, vol. 5, Suppl. 1, r. A136
11. Gasimova G.A., Ivanova O.S., Baranchikov A.E., Sherbakov A.B., Ivanov V.K., Treytkov Yu.D. Synthesis aqueous sols of nanocrystalline cerium oxide doped by gadolinium. Nanosystems, 2011, vol. 2, no. 3, pp. 113-120.; EDN: https://elibrary.ru/OJNCHJ
12. Louis C., Bazzi R., Marquette C.A., Bridot J., Roux S., Ledoux G., Mercier B., Blum L., Perriat P., Tillement O. Nanosized hybrid particles with double luminescence for biological labeling. Chem. Mater., 2005, vol. 17, pp. 1673-1682.; DOI: https://doi.org/10.1021/cm0480162; EDN: https://elibrary.ru/VKCQCM
13. Gil D.O., Dolgopolova E.A., Shekunova T.O., Sadovnikov A.A., Ivanova O.S., Ivanov V.K., Tretyakov Yu. D. Photoprotective properties of solid solutions of cerium oxide. Nanosystems, 2013, vol. 4, no. 1, pp. 78-82.; EDN: https://elibrary.ru/PYZTKB
14. Naganuma T., Traversa E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials, 2014, vol. 35, no. 15, pp. 4441-4453.
15. Muller F.L. [et al.] Trends in oxidative aging theories. Free Radic. Biol. Med., 2007, vol. 43, 477 p.