THE FUNCTIONAL STATE OF MITOCHONDRIA DETERMINES THE RESISTANCE OF PEA SEEDLINGS TO WATER DEFICIT
Abstract and keywords
Abstract (English):
Water deficiency, triggering lipid peroxidation, leads to a decrease in the content of unsaturated fatty acids (FA) with 18 carbon atoms in the membranes of mitochondria pea seedlings. This process is accompanied by a decrease of maximum rates of oxidation of NAD-dependent substrates and electron transport rates to the end site of the respiratory chain, also mitochondrial swelling. Introduction to the incubation medium of mitochondria 5×10-6 M cytochrome c restored of electron transport rates in the terminal site of respiratory chain. The same result was obtained in the processing of peas 2×10-12M. Melaphen (melamine salt of bis (oxymethyl)-phosphinic acid). Melaphen prevented mitochondrial swelling and reduces the maximum rates of oxidation of NAD-dependent substrates. It is assumed that the violation of bioenergetic characteristics of mitochondria in conditions of water deficiency, apparently connected with the oxidation of unsaturated fatty acids included in the composition of cardiolipin, mainly linoleic acid, and therefore by reducing the content of this phospholipid in the inner mitochondrial membrane. Melaphen, preventing lipid peroxidation, restores functional activity of mitochondria, providing increased resistance of seedlings to water deficiency.

Keywords:
mitochondria, lipid peroxidation, cardiolipin, fatty acids
Text
Publication text (PDF): Read Download
References

1. Grabel'nyh O.I. Energeticheskie funkcii mitohondriy rasteniy v stressovyh usloviyah. J. Stress Physiol. Biochem., 2005, t. 1, № 1, s. 38-54. [Grabelnych O.I. The energetic functions of plant mitochondria under stress conditions. J. Stress Physiol. Biochem., 2005, vol. 1, no. 1, pp. 38-54. (In Russ.)]

2. Voynikov V.K. Yaderno-mitohondrial'nye vzaimootnosheniya pri redoks-regulyacii ekspresii genov rasteniy pri stressah. Mater. Vserossiyskogo simpoziuma «Rastenie i stress», M., 2010, s. 90-91. [Voynikov V.K. Nuclear-mitochondrial interaction involved in redox-regulation of expression of plant genes of under stress. Proceedings of the Russian conference “Plant and Stress”, Moscow, 2010, pp. 90-91. (In Russ.)]

3. Chirkova T.V. Kletochnye membrany i ustoychivost' rasteniy k stressovym vozdeystviyam. SOZh, 1997, № 9, s. 12-17. [Chirkova T.V. Cell membranes and plant resistance to stress factors. Soros educational journal, 1997, no. 9, pp. 12-17. (In Russ.)]

4. Kang S.Y., Gutowsky H.S., Hsung J.C., Jacobs R., King T.E., Rice D., Oldfield E. Nuclear magnetic resonance investigation of the cytochrome oxidase-phospholipid interaction: a new model for boundary lipid. Biochemistry (Mosc.), 1979, vol. 18, no. 15, rr. 3257-3267.

5. Tailor N.L., Day D.A., Millar A.H. Tagrets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J. of Exp. Botany, 2003, vol. 55 (394), pp. 1-10.

6. Plotnikov E., Chupyrkina A., Vasileva A., Kazachenko A., Zorov D. The role of reactive oxygen and nitrogen species in the pathogenesis of acute renal failure. BBA, 2008, vol. 1777, pp. S58-S59.

7. Rodríguez M., Canales E., Borrás-Hidalgo O. Molecular aspects of abiotic stress in plants. Biotecnología Aplicada, 2005, vol. 22, no. 1, pp. 1-10.

8. Genova M.L., Lenaz G. Functional role of mitochondrial respiratory supercomplexes. BBA, 2014, vol. 1837, no. 4, pp. 427-443.

9. Vladimirov Yu.A., Olenev V.I., Suslova T.V., Cheremisina Z.V. Lipid peroxidation in mitochondrial membrane. Adv. Lipid Res., 1980, vol. 17, no. 1, pp. 173-249.

10. Chalova L.I., Ozereckovskaya O.L., Berezina. I.V. Biologicheskie induktory zaschitnyh reakciy rasteniy i vozmozhnye puti ih prakticheskogo ispol'zovaniya. Biohimiya immuniteta, pokoya, stareniya rasteniy. M: Nauka, 1984, 57 c. [Chalova L.I., Ozeretskovskaya O.L., Berezin I.V. Biological inductors of protective reactions of plants and possible ways of their practical use. Biochemistry of immune system, of rest, ageing of plants. Moscow: Nauka, 1984, 57 p. (In Russ.)]

11. Shugaeva N.A., Vyskrebenceva E.I., Orehova S.O., Shugaev A.G. Vliyanie vodnogo deficita na dyhanie provodyaschih puchkov listovogo chereshka saharnoy svekly. Fiziologiya rasteniy, 2007, t. 54, № 3, s. 373-380. [Shugaeva N.A., Vyskrebentseva E.I., Smith S.O., Shugaev A.G. Influence of water deficit on respiration of conducting bundles of the leaf petioles of sugar beet. Plant physiology, 2007, vol. 54, no. 3, pp. 373-380. (In Russ.)]

12. Zhigacheva I.V., Burlakova E.B. Adaptogen decrease the generation of reactive oxygen species by mitochondria. Research progress in chemical and biochemical physics. Pure and applied science, New-York: Nova publishers, 2014, rr. 193-2055

13. Popov V.N., Ruge E.K., Starkov A.A. Vliyanie ingibitorov elektronnogo transporta na obrazovanie aktivnyh form kisloroda pri okislenii sukcinata mitohondriyami goroha. Biohimiya, 2003, t. 68, № 7, s. 910-916. [Popov V.N., Ruge, E.K., Starkov A.A. Effect of electron transport inhibitors on the formation of reactive oxygen species in the oxidation of succinate by mitochondria of pea. Biochemistry, 2003, vol. 68, no. 7, pp. 910-916. (In Russ.)]

14. Fletcher B.I., Dillard C.D., Tappel A.L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem., 1973, vol. 52, pp. 1-9.

15. Carreau J.P., Dubacq J.P. Adaptation of Macroscale Method to the Microscale for Fatty Acid Methyl Trans esterification of Biological Lipid Extracts. J. Chromatogr. 1979, vol. 151, pp. 384-398.

16. Golovina R.V., Kuzmenko T.E. Thermodynamic Evalu!ation Interaction of Fatty Acid Methyl Esters with Polar and Nonpolar Stationary Phases, Based on Their Retention Indices Chromatographia. Chromatography, 1977, vol. 10, pp. 545-546.

17. Paradies G., Petrosillo G., Pistolese M., Venosa N., Federici A., Ruggiero F.M. Decrease in Mitochondrial Complex I Activity in Ischemic/Perfused Rat Heart. Involvement of Reactive Oxygen Species and Cardiolipin. Circulation Research, 2004, vol. 94, pp. 53-59.

18. Demin I.N., Deryabin A.N., Sin'kevich M.S., Trunova T.I. Vvedenie gena desA Δ12-acil-lipidnoy desaturazy cianobakterii povyshaet ustoychivost' rasteniy kartofelya k okislitel'nomu stressu, vyzvannomu gipotermiey. Fiziologiya rasteniy, 2008, t. 55, s. 710-720. [Diomin I.N. et al.The introduction of the desA gene Δ12-acyl-lipid desaturase of the cyanobacterium increases the resistance of potato plants to oxidative stress induced by hypothermia. Plant physiology, 2008, vol. 55, pp. 710-720. (In Russ.)]

19. Genova M.L., Lenaz G. Functional role of mitochondrial respiratory supercomplexes. BBA, 2014, vol. 1837, no. 4, pp. 427-443.


Login or Create
* Forgot password?