MODEL OF MORPHOGENESIS OF MACROSYSTEMS AS AN ACTIVE MEDIUM
Abstract and keywords
Abstract (English):
In this article, a model of spatio-temporal self-organization of urban ecosystems as a superposition of conjugate active media is proposed. This type of ecosystem is characterized by a high rate of population growth and density due to the concentration of residential, industrial, commercial and other objects, as well as communication media. These conditions disturb the dynamic balance of energy flows and information material, reduce "buffer capacity" natural subsystems and increase nonlinearity, and therefore the instability of system processes. The model is based on the FitzHugh-Nagumo equation, modified by the authors, taking into account the heterogeneity of anthropogenic (activator) and natural (inhibitor) factors. The proposed model makes it possible to identify threshold values of control parameters and to consider the basic principles of the development of autowave processes forming the structures of urban ecosystems. The proposed model allows to identify threshold values of control parameters to consider the basic principles of autowave processes that form the structure of urban ecosystems.

Keywords:
active media, autowave self-organization, urban ecosystems
Text
Publication text (PDF): Read Download
References

1. Sidorova A.E., Muhartova Yu.V., Yakovenko L.V. Urboekosistemy kak superpoziciya sopryazhennyh aktivnyh sred. Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2014, № 5, s. 29-35. [Sidorova A.E., Muhartova Yu.V., Yakovenko L.V. Urban Ecosystem as a Superposition of Interrelated Active Media. Moscow University Physics Bulletin, part 3. Physics. Astronomy, 2014, no. 5, pp. 29-35. (In Russ.)]

2. Sidorova A.E., Levashova N.T., Mel'nikova A.A., Deryugina N.N., Semina A.E. Avtovolnovaya samoorganizaciya v neodnorodnyh prirodno-antropogennyh ekosistemah. Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2016, № 6, s. 39-45. [Sidorova A.E., Levashova N.T., Melnikova A.A., Deryugina N.N., Semina A.E. Autowave self-organization in heterogeneous natural-anthropogenic ecosystems. Moscow University Physics Bulletin, part 3. Physics. Astronomy, 2016, no. 6, pp. 39-45. (In Russ.)]

3. Levashova N., Melnikova A., Semina A., Sidorova A. Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media. Communication on Applied Mathematics and Computation, vol. 31, no. 1, pp. 32-42.

4. Murray J.D. Mathematical Biology II: Spatial Models and Biomedical Applications. Berlin Heidelberg: Springer- Verlag, 2003, 811 p.

5. El'kin Yu.V. Avtovolnovye processy (kratkiy obzor). Matematicheskaya biologiya i bioinformatika, 2006, t. 1, № 1, s. 27-40. [Elkin Yu.V. Autowave processes (short review). Mathematical Biology and Bioinformatics, 2006, vol. 1, no. 1, pp. 27-40. (In Russ.)]

6. Vasil'ev V.A., Romanovskiy Yu.M., Yahno V.G. Avtovolnovye processy. M.: Nauka, 1987, 240 s. [Vasiliev V.A., Romanovsky Yu.M., Yakhno V.G. Autowave processes. M.: Nauka, 1987, 240 p. (In Russ.)]

7. Romanovskiy Yu.M., Stepanova N.V., Chernavskiy D.S. Matematicheskaya biofizika. M.: Nauka, 1984, 304 s. [Romanovsky Yu.M., Stepanova N.V., Chernavsky D.S. Mathematical Biophysics. M.: Nauka, 1984, 304 p. (In Russ.)]

8. Tverdislov V.A., Malyshko E.V., Il'chenko S.A. Ot avtovolnovyh mehanizmov samoorganizacii k molekulyarnym mashinam. Izvestiya RAN. Seriya fizicheskaya, 2015, t. 79, № 12, c. 1728-1732. [Tverdislov V.A., Malyshko E.V., Ilchenko S.A. From Autowave Mechanisms of Self-Assembly to Molecular Machines. Proceedings of the Russian Academy of Sciences. Physical series, 2015, vol. 79, no. 12, pp. 1728-1732. (In Russ.)]

9. Savenko V.S. Geohimicheskie aspekty ustoychivogo razvitiya. M.: GEOS, 2003, 180 s. [Savenko V.S. Geochemical aspects of sustainable development. M.: GEOS, 2003, 180 p. (In Russ.)]

10. FitzHugh R.A. Impulses and physiological states in theoretical model of nerve membrane. Biophys. J., 1961, pp. 445-466.

11. Sidorova A.E., Levashova N.T., Mel'nikova A.A., Yakovenko L.V. Populyacionnaya model' urboekosistem v predstavleniyah aktivnyh sred. Biofizika, 2015, t. 60, № 3, s. 574-582. [Sidorova A.E., Levashova N.T., Melnikova A.A., Yakovenko L.V. Population model of urban ecosystems as active media. Biophysics, 2015, vol. 60, no. 3, pp. 574-582. (In Russ.)]

12. Kalitkin N.N., Koryakin P.V. Chislennye metody: v 2 kn. Kn 2. Metody matematicheskoy fiziki. M: Izdatel'skiy centr «Akademiya», 2013, 303 s. [Kalitkin N.N., Koryakin P.V. Numerical methods: in 2 books. Methods of mathematical physics. M.: The publishing center "Academy", 2013, 303 p. (In Russ.)]

13. Samarskiy A.A., Gulin A.V. Chislennye metody matematicheskoy fiziki. M.: Nauchnyy mir, 2003, 316 s. [Samarsky A.A., Gulin A.V. Numerical methods of mathematical physics. M.: The scientific world, 2003, 316 p. (In Russ.)]

14. Vaz E., Arsanjani J.J. Predicting urban growth of the Greater Toronto Area - coupling a markov cellular automata with document meta-analysis. Journal of Environmental Informatics, 2015, vol. 25, no. 2, pp. 71-80.


Login or Create
* Forgot password?