The influence of the proton concentration (pH 6.8, 7.4, 8.0) on the structure of the protein part of oxyhemoglobin was investigated in the work. Raman scattering showed that the transition to the oxidized state stabilizes the structure of the porphyrin ring, under these conditions the pH of the incubation environ does not affect the conformation of hemoporphyrin and its ability to transfer oxygen. A decrease in the ζ-potential of hemoglobin molecules was observed with increasing pH of the incubation environ, while the size of the molecule remains unchanged. An increase in the intensity and lifetime of fluorescence of tryptophan residues with an increase in the pH of the environ has been revealed, which indicates the presence of local conformational rearrangements that cause a change in the microenvironment of tryptophan in the protein part of hemoglobin. In this regard, in this paper, the relationship between the protein part and hemoporphyrin of human oxyhemoglobin in the pH of the incubation environ.
hemoglobin, pH, Raman scattering, ζ-potential, tryptophan fluorescence, hemoporphyrin, Bohr effect
1. Blyumenfel'd L.A. Gemoglobin. Himiya sorosovskiy obrazovatel'nyy zhurnal, 1998, № 4, s. 33-38. [Blumenfeld LA Hemoglobin. Chemistry Soros Educational Journal, 1998, no. 4, pp. 33-38 (in Rus)]
2. Bryzgalova N.Yu., Brazhe N.A., Yusipovich A. I., Maksimov G.V., Rubin A.B. Role of the state of erythrocyte cytoplasm in the change of hemoglobin affinity for oxygen. Biofizika, 2009, Vol. 54, No. 3, pp. 442-447.
3. Luneva O.G., Brazhe N.A., Maksimova N.V., Rodnenkov O.V., Parshina E.Yu, Bryzgalova N.Yu, Maksimov G.V., Rubin A.B., Orlov S.N., Chazov E.I Ion transport, membrane fluidity and haemoglobin conformation in erythrocyte from patients with cardiovascular diseases: Role of augmented plasma cholesterol. Pathophysiology, 2007, no. 14, pp. 41-46.
4. Vasil'eva E.M. Biohimicheskie osobennosti eritrocita. Vliyanie patologiy. Biomedicinskaya himiya, 2005, t. 51, vyp. 2, s. 118-126. [Vasilyeva E.M. Biochemical features of erythrocyte. The influence of pathologies. Biomedical Chemistry, 2005, vol. 51, no. 2, pp. 118-126 (in Rus.)]
5. Perutz M.F. Molecular Anatomy, Physiology, and Pathology of Hemoglobin. Molecular Basis of Blood Diseases, Ed. C. Stammatagayanopoulus et al. Philadelphia: Saunders, 1987.
6. Nagatomo, S., Okumura, M., Saito, K., Ogura, T., Kitagawa, T., & Nagai, M. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect. Biochemistry, 2017, vol. 56, no. 9, pp. 1261-1273.
7. Weber R.E., Jensen F.B., Cox R.P. Analysis of teleost hemoglobin by Adair and Monod-Wyman-Changeux models. Effects of nucleoside triphosphates and pH on oxygenation of tench hemoglobin. J Comp Physiol B, 1987, vol. 157, pp. 145-152
8. Nel'son D., Koks M. Osnovy biohimii Lenindzhera. M.: Bionom, 2014, t. 2, 636 s. [Nelson D., Koks M. Foundations of Biochemistry of Leninger. Moscow: Bionom, 2014, vol. 2, 636 p. (in Rus.)]
9. Dobretsov G.E., Kurek N.K., Syrejshchikova T.I., Yakimenko M.N., Clarke D.T., Jones G.R., Munro I.H. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam. Nuclear Instruments and Methods in Physics Research A, 2000, vol. 448, pp. 471-477.
10. Lakovich Dzh. Osnovy fluorescentnoy spektroskopii. M.: Mir, 1986, 496 s. [Lakovich, J. Principles of fluorescence spectroscopy, Moscow: Mir, 1986, 496 p. (in Rus.)]
11. Rodionova E.Yu., Dmitrieva I.Yu., Chuhno A.S. Elektrokineticheskie svoysva gemoglobina v vodnyh rastvorah 1-,2- i 3-zaryadnyh ionov. Butlerovskie soobscheniya, 2013, t. 34. № 6, s. 135-140. [Rodionova E.Yu., Dmitrieva I.Yu., Chukhno A.S. Electrokinetic properties of hemoglobin in aqueous solutions of 1-, 2-, and 3-charge ions. Butlerov Communications, 2013, vol. 34, no. 6, pp.135-140 (in Rus.)]