TRANSLATIONAL DIFFUSION OF PROTEINS IN HIGHLY CONCENTRATED SOLUTIONS
Abstract and keywords
Abstract (English):
The present study focuses on obtaining a generalized concentration dependence of the self-diffusion coefficient for trypsin and α-chymotrypsin as representatives of globular spheroidal proteins and for fibrinogen as an example of irregular-shaped protein. Diffusion experiments were performed by nuclear magnetic resonance (NMR) using a pulsed magnetic field gradient (PFG). The resulting generalized concentration dependence of the self-diffusion coefficient of proteins was analyzed within the framework of known theoretical approach - phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics. We showed the possibility of using the phenomenological approach to describe the mobility of proteins of various shapes and sizes over a wide range of concentrations. The dynamic parameters of the system were determined: friction coefficients between protein molecules and friction coefficients between protein and solvent molecules. A qualitative explanation of the obtained values is proposed.

Keywords:
YaMR, diffuziya, belki, koncentracionnaya zavisimost' KSD
Text
Publication text (PDF): Read Download
References

1. Kuznetsova I. M., Turoverov K. K., Uversky V. N. What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci., 2014, vol. 15, iss. 12, pp. 23090-23140.

2. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences Annu. Rev. Biophys. Biomol. Struct., 1993, vol. 22, pp. 27-65.

3. Zimmerman S. B., Trach S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol., 1991, vol. 222, pp. 599-620.

4. Zhou H.X., Rivas G.N., Minton A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Ann Rev Biophys, 2008, vol. 37, pp. 375-397.

5. Vink H. Mutual diffusion and self-diffusion in the frictional formalism of non-equilibrium thermodynamics J.Chem. Soc. Faraday Trans. 1, 1985, vol. 81, pp. 1725-1730.

6. Dixon M., Webb E.C. Enzymes. New York:Academic Press, 1979, 1116 p.

7. Anisimov A.A. Osnovy biohimii. M.: Vysshaya shkola, 1986, 551 s. [Anisimov A.A. Osnovy biokhimii. Moscow: Vysshaya shkola, 1986, 551 p. (In Russ.)]

8. Fersht A. Enzyme Structure and Mechanism. New York: W H Freeman & Co (Sd), 1985, 475 p.

9. Zbarskiy B.I., Ivanov I.I., Mardashev S.P. Biologicheskaya himiya. M.: MEDGIZ, 1960, 520 p.

10. Zuev Yu.F., Zakharchenko N.L., Stupishina E.A., Faizullin D.A., Vylegzhanina N.N. Peculiarities of substrate immobilization and the trypsin catalytic activity in reverse microemulsion. Moscow University Chemistry Bulletin, 2003, vol. 44, iss. 1, pp. 13-15. [Zbarskyi B.I., Ivanov I.I., Mardashev C.P. Biologicheskaya khimiya. Moscow: MEDGIZ, 1960, 520 p. (In Russ.)]

11. Dellenback R. J., Chien S. The extinction coefficient of fibrinogen from man, dog, elephant, sheep, and goat at 280 mmu. Proc. Soc. Exp. Biol. Med., 1970, vol. 134, pp. 353-355.

12. Usdin E., Snyder S.H. Frontiers in catecholamine research. International catecholamine symposium, 3rd, University of Strasbourg, 1973, p. 49.

13. Levashov A.V., Khmelnitsky Y. L., Klyachko N. L., Chernyak V. Ya., Martinek K. Enzymes entrapped into reversed micelles in organic solvents: Sedimentation analysis of the protein-aerosol OT-H2O-Octane system J. of Col. and Int. Sci.,1982, vol. 88, iss. 2, pp. 444-457.

14. Siegel L.M., Monty K.J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta, 1966, vol. 112, pp. 346-362.

15. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem., 2004, vol. 25, iss. 13, pp. 1605-1612.

16. Pattabhi V., Ibrahim B. Syed, Shamaladevi N. Trypsin Activity Reduced by an Autocatalytically Produced Nonapeptide. J.Biomol.Struct.Dyn., 2004, vol. 21, pp. 737-744.

17. Capasso M., Rizzi C.M., Menegatti E., Ascenzi P., Bolognesi M. Crystal structure of the bovine α-chymotrypsin:kunitz inhibitor complex. An example of multiple protein:protein recognition sites. J.Mol.Recog., 1997, vol. 10, pp. 26-35.

18. Medved L. V., Weisel J. W. Recommendations for nomenclature on fibrinogen and fibrin. J. Thromb. Haemostasis, 2009, vol. 7, iss. 2, pp. 355-359.


Login or Create
* Forgot password?