Using the method of laser interference microscopy, it was shown that an increase in the concentration of Ca2+ ions in the incubation medium to 3.5 mM results in changes in the morphological characteristics of the pigeon's erythrocytes. There is a decrease in the area of the cell and the optical path difference, which is directly proportional to the thickness of the cell. Adding to the suspension of erythrocytes incubated in the presence of high calcium concentrations, flavonoids isolated from black currant fruit, the area values and the optical path difference were comparable with the control values. We assume that, because of their properties, flavonoids are bound by free Ca2+ ions, which leads to inhibition of processes aimed at changing the morphological characteristics of erythrocytes.
Pigeon erythrocytes, Calcium ions, Laser-interference microscopy
1. Angka L., Lee E.A., Rota S.G. Glucopsychosine increases cytosolic calcium to induce calpain-mediated apoptosis of acute myeloid leukemia cells. Cancer Letters, 2014, vol. 348, pp. 29-37.
2. Bogdanova A., Makhro A., Wangetal J. Calcium in Red Blood Cells - A Perilous Balance. Int. J. Mol. Sci., 2013, vol. 14, pp. 9848-9872.
3. Bruce J.I., Elliott A.C. Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol., 2007, vol. 293, no. 3, pp. 938-950.
4. Zaidi A. Plasma membrane Ca2+-ATPases: Targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem., 2010, vol. 1, iss. 9, pp. 271-280.
5. Woon L.A., Holland J.W., Kable E.P. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium, 1999, vol. 25, pp. 313-320.
6. Carafoli E., Santella L., Branca D. Brini, Generation, control, and processing of cellular calcium signals. Biochem. Mol. Biol., 2001, vol. 36, pp. 107-260.
7. Carafoli E. Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U. S. A, 2002, vol. 99, pp. 1115- 1122.
8. Garcia C.S.N.B., Prota L.F.M., Morales M.M. Understanding the mechanisms of lung mechanical stress. Brazilian Journal of Medical and Biological Research, 2006, vol. 39, pp. 697-706.
9. Orlov S.N., Pokudin N.I., Ryazhskiy G.G. O mehanizme regulyacii transporta ionov cherez plazmaticheskuyu membranu pri izmenenii ob'ema kletki. Biol. membrany, 1988, № 8 (5), s. 1030-1041. [Orlov S.N., Pokudin N.I., Ryazhsky G.G. On the mechanism of regulation of ion transport through the plasma membrane with a change in cell volume. Biol. Membranes, 1988, no. 8 (5), pp. 1030-1041. (In Russ.)]
10. Trubacheva O.A., Shahristova E.V., Galich A.I., Petrova I.V. Vliyanie povyshennoy Sa2+-zavisimoy kalievoy pronicaemosti na deformiruemost' eritrocitov. Vestnik TGPU, 2011, vyp. 5, s. 69-72. [Trubacheva O.A., Shakhristova E.V., Galich A.I., Petrova I.V. The Effect of Elevated Ca2+-dependent Potassium Permeability of Erythrocyte Deformability. Vestnik TSPU, 2011, iss. 5, pp. 69-72. (In Russ.)]
11. Roshal' A.D., Sahno T.V. Teoreticheskiy analiz struktury kompleksov 5- gidroksiflavonolov s ionami metallov i proizvodnymi bora. Vestnik Har'kovskogo nacional'nogo universiteta, 2001, vyp. 7 (30), s. 123-129. [Roshal' A.D., Sahno T.V. Theoretical analysis of the structure of complexes of 5-hydroxyflavonols with metal ions and boron derivatives. Vestnik Har'kovskogo nacional'nogo universiteta, 2001, iss. 7 (30), no. 532, pp. 123-129. (In Russ.)]
12. Yusipovich A.I., Berestovskaya Yu.Yu., Shutova V.V., Levin G.G., Gerasimenko L.M., Maksimov G.V., Rubin A.B. Novye vozmozhnosti issledovaniya mikrobiologicheskih ob'ektov metodom larenoy interferencionnoy mikroskopii. Biofizika, 2011, t. 56, № 6, s. 1091-1098. [Yusipovich A.I., Berestovskaya Y.Y., Shutova V.V., Gerasimenko L.M., Maksimov G.V., Rubin A.B., Levin G.G. Biophysics, 2011, vol. 56, iss. 6, pp. 1063-1068. (In Russ.)]
13. Revin V.V., Filatova S.M., Syusin I.V., Yazykova M.Yu., Revina E.S., Gromova N.V., Devyatkin A.A. Study of correlation between state and composition of lipid phase and change in erythrocytes structure under induction of oxidative processes. International Journal of Hematology, 2015, vol. 101, iss. 5, rr. 487-496.
14. Lang K.S., Lang P.A., Bauer C. Mechanisms of suicidal erythrocyte death. Cellular physlology and biochemistry, 2005, vol. 15, p. 195-202.
15. Syusin I.V., Revin V.V., Tychkov A., Solomadin I., Revina N., Devyatkin A.A. Study of Morphological Characteristics of Pigeon’s Erythrocytes and Hemoglobin Properties under the Influence of Ions Ca2+. Biology and Medicine, 2016, vol. 7, iss. 4, pp. 1-4.